Compressive Strength of Controlled Low Strength Materials Containing Stainless Steel Slag

Y. N. Sheen*, T. H. Sun, W. H. Chung

ABSTRACT

The purpose of this research is to determine the compressive strength of the Controlled Low Strength Materials (CLSM) containing both the Stainless Steel Oxidizing Slag (SSOS) and the Stainless Steel Reducing Slag (SSRS). The test variables include the general type (28-day compressive strength < 30 kg/cm²) and the early type (1-day compressive strength > 5 kg/cm²). The binder amount is 130 kg/m³, and water to binder ratio (W/B) are 1.1, 1.3 and 1.5. The weight ratios of SSOS replacing the fine aggregate are 0%, 50%, 75% and 100%. The weight ratios of the SSRS replacing the binder are 0%, 25%, and 50%. The results show utilizing SSOS and SSRS can produce CLSM which slump larger than 20 cm. The compressive strength of 28 days of CLSM consists of the Stainless Steel Slag less than 30 kg/cm². As the SSOS replace the fine aggregate more, the unit weight and pulse velocity of CLSM raise, but the setting time reduce. As the SSRS replace the binder more, the pulse velocity and the compressive strength of CLSM reduce, but the setting time of CLSM increase relatively.

Keywords: SSOS; SSRS; CLSM; Compressive strength.
1. 前言

近年來世界各國為提升填方工程品質，降低成本及交通影響之衝擊，發展出一種低強度且具高流動性、自充填性之回填材料，稱為控制性低強度材料(Controlled Low Strength Materials；CLSM)。ACI 229R[1]將CLSM定義為一種28天抗壓強度不超過84 kg/cm² (1200 psi)的材料，可使用於包括管線埋設回填工程、路基更新整修或背填擋土等工程。在最近營建工程技術的發展上，CLSM已可取代一般常用的級配料作為開挖後回填之材料。但目前CLSM之設計應用仍無相關規範可遵循，且為避免受限於行政規定約束，各工程單位使用意願低且採用較寬鬆之規定值。由於CLSM材料對於骨材之要求無特殊限制，在骨材資源日益匱乏情況下，若採用天然骨材製作CLSM似乎不符合經濟性，且在政府推廣綠建築的政策下，再生骨材為綠建築與永續發展的一項新思維。廢棄土石方、水庫淤泥、廢棄混凝土、廢鐵件料、水泥窯底灰等，皆可作為拌製CLSM的材料[2-6]。在煉鋼工業中不銹鋼業佔相當重要的地位，但不銹鋼爐碴之回收應用的相關研究較少。本研究之目的係探討以不銹鋼爐碴取代細骨材與膠結料，來產製不銹鋼爐碴CLSM之可行性，並探討其抗壓強度發展，及應用超音波及低強度反彈錘，建立非破壞檢測評估方法，期能達到不銹鋼爐碴資源回收再利用與提昇產業競爭力之目的[7]。

2. 研究計畫

本研究之CLSM包含不銹鋼氧化碴(SSOS)與不銹鋼還原碴(SSRS)兩種材料，由於至目前並無CLSM材料之標準配比設計方法，故依重量比例方式設計CLSM材料之配比，以坍度大於20 cm、1天抗壓強度大於5 kg/cm² (3.5 MPa)及28天抗壓強度不超過30 kg/cm² (21 MPa)為設計目標。研究中將CLSM之膠結料用量固定為60 kg/m³，並添加25%飛灰量取代膠結料以增加流動性，水膠比W/B為1.1、1.3與1.5；而膠結料：粗骨材：細骨材為1：4：8。CLSM配比中使用輸氣劑及速凝劑，使用輸氣劑目的在於增加CLSM工作性；而速凝劑則使用於早強型CLSM。氧化碴取代細骨材部份，一般型不銹鋼爐碴CLSM之氧化碴取代細骨材比例為0%、50%、75%及100%；早強型不銹鋼爐碴CLSM之氧化碴取代細骨材比例為0%、50%及100%。氧化碴取代膠結料部份，取代比例為0%、25%及50%。利用ACI 229R將CLSM之標準配比設計方法，依重量比例方式設計CLSM材料之配比，以坍度大於20 cm、1天抗壓強度大於5 kg/cm² (3.5 MPa)及28天抗壓強度不超過30 kg/cm² (21 MPa)作為設計目標。研究中將CLSM之膠結料用量固定為60 kg/m³，並添加25%飛灰量取代膠結料以增加流動性，水膠比W/B為1.1、1.3與1.5；而膠結料：粗骨材：細骨材為1：4：8。CLSM配比中使用輸氣劑及速凝劑，使用輸氣劑目的在於增加CLSM工作性；而速凝劑則使用於早強型CLSM。氧化碴取代細骨材部份，一般型不銹鋼爐碴CLSM之氧化碴取代細骨材比例為0%、50%、75%及100%；早強型不銹鋼爐碴CLSM之氧化碴取代細骨材比例為0%、50%及100%。氧化碴取代膠結料部份，取代比例為0%、25%及50%。利用ACI 229R將CLSM之標準配比設計方法，依重量比例方式設計CLSM材料之配比，以坍度大於20 cm、1天抗壓強度大於5 kg/cm² (3.5 MPa)及28天抗壓強度不超過30 kg/cm² (21 MPa)作為設計目標。研究中將CLSM之膠結料用量固定為60 kg/m³，並添加25%飛灰量取代膠結料以增加流動性，水膠比W/B為1.1、1.3與1.5；而膠結料：粗骨材：細骨材為1：4：8。CLSM配比中使用輸氣劑及速凝劑，使用輸氣劑目的在於增加CLSM工作性；而速凝劑則使用於早強型CLSM。氧化碴取代細骨材部份，一般型不銹鋼爐碴CLSM之氧化碴取代細骨材比例為0%、50%、75%及100%；早強型不銹鋼爐碴CLSM之氧化碴取代細骨材比例為0%、50%及100%。氧化碴取代膠結料部份，取代比例為0%、25%及50%。利用ACI 229R將CLSM之標準配比設計方法，依重量比例方式設計CLSM材料之配比，以坍度大於20 cm、1天抗壓強度大於5 kg/cm² (3.5 MPa)及28天抗壓強度不超過30 kg/cm² (21 MPa)作為設計目標。研究中將CLSM之膠結料用量固定為60 kg/m³，並添加25%飛灰量取代膠結料以增加流動性，水膠比W/B為1.1、1.3與1.5；而膠結料：粗骨材：細骨材為1：4：8。CLSM配比中使用輸氣劑及速凝劑，使用輸氣劑目的在於增加CLSM工作性；而速凝劑則使用於早強型CLSM。氧化碴取代細骨材部份，一般型不銹鋼爐碴CLSM之氧化碴取代細骨材比例為0%、50%、75%及100%；早強型不銹鋼爐碴CLSM之氧化碴取代細骨材比例為0%、50%及100%。氧化碴取代膠結料部份，取代比例為0%、25%及50%。利用ACI 229R將CLSM之標準配比設計方法，依重量比例方式設計CLSM材料之配比，以坍度大於20 cm、1天抗壓強度大於5 kg/cm² (3.5 MPa)及28天抗壓強度不超過30 kg/cm² (21 MPa)作為設計目標。研究中將CLSM之膠結料用量固定為60 kg/m³，並添加25%飛灰量取代膠結料以增加流動性，水膠比W/B為1.1、1.3與1.5；而膠結料：粗骨材：細骨材為1：4：8。CLSM配比中使用輸氣劑及速凝劑，使用輸氣劑目的在於增加CLSM工作性；而速凝劑則使用於早強型CLSM。氧化碴取代細骨材部份，一般型不銹鋼爐碴CLSM之氧化碴取代細骨材比例為0%、50%、75%及100%；早強型不銹鋼爐碴CLSM之氧化碴取代細骨材比例為0%、50%及100%。氧化碴取代膠結料部份，取代比例為0%、25%及50%。利用ACI 229R將CLSM之標準配比設計方法，依重量比例方式設計CLSM材料之配比，以坍度大於20 cm、1天抗壓強度大於5 kg/cm² (3.5 MPa)及28天抗壓強度不超過30 kg/cm² (21 MPa)作為設計目標。研究中將CLSM之膠結料用量固定為60 kg/m³，並添加25%飛灰量取代膠結料以增加流動性，水膠比W/B為1.1、1.3與1.5；而膠結料：粗骨材：細骨材為1：4：8。CLSM配比中使用輸氣劑及速凝劑，使用輸氣劑目的在於增加CLSM工作性；而速凝劑則使用於早強型CLSM。氧化碴取代細骨材部份，一般型不銹鋼爐碴CLSM之氧化碴取代細骨材比例為0%、50%、
不銹鋼爐碴含量對CLSM材料抗壓強度之影響

3.2 不銹鋼爐碴 CLSM 強度發展

圖2為還原碴取代不同比例膠結料一般型CLSM於1天與28天生機之抗壓強度。結果顯示還原碴取代膠結料比例愈大，則抗壓強度相對愈低；以取代膠結料0%的抗壓強度為最高，其次為取代膠結料25%，最低為取代膠結料50%。當W/B=1.1及取代膠結料0%時，其1天的抗壓強度皆可達到5

kg/cm²以上，且隨著W/B愈大，所獲得之抗壓強度則明顯降低許多。齡期28天時，大部分抗壓強度皆低於30kg/cm²，達到預定的設計目標，能有助於工程的再開挖性。圖3為還原碴取代不同比例膠結料早強型CLSM於1天與28天生機之抗壓強度。結果顯示隨取代膠結料比例愈大，抗壓強度相對降低，其中以取代膠結料0%的抗壓強度為最高，其次

表1 一般型不銹鋼爐碴CLSM配比資料。

<table>
<thead>
<tr>
<th>W/B</th>
<th>還原碴取代比例(%)</th>
<th>車原漿取代比例(%)</th>
<th>配比材料(kg/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>W</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>143</td>
</tr>
<tr>
<td>1.1</td>
<td>25</td>
<td>50</td>
<td>143</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>143</td>
<td>97.5</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>143</td>
<td>97.5</td>
</tr>
<tr>
<td>50</td>
<td>0</td>
<td>143</td>
<td>73.12</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>143</td>
<td>73.12</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>143</td>
<td>73.12</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>143</td>
<td>48.75</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>143</td>
<td>48.75</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>143</td>
<td>48.75</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>143</td>
<td>48.75</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>169</td>
<td>97.5</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>169</td>
<td>97.5</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>169</td>
<td>97.5</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>169</td>
<td>97.5</td>
</tr>
<tr>
<td>1.3</td>
<td>25</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>169</td>
<td>73.12</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>169</td>
<td>73.12</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>169</td>
<td>73.12</td>
</tr>
<tr>
<td>50</td>
<td>0</td>
<td>169</td>
<td>48.75</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>169</td>
<td>48.75</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>169</td>
<td>48.75</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>169</td>
<td>48.75</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>195</td>
<td>97.5</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>195</td>
<td>97.5</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>195</td>
<td>97.5</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>195</td>
<td>97.5</td>
</tr>
<tr>
<td>1.5</td>
<td>25</td>
<td>0</td>
<td>195</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>195</td>
<td>73.12</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>195</td>
<td>73.12</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>195</td>
<td>73.12</td>
</tr>
<tr>
<td>50</td>
<td>0</td>
<td>195</td>
<td>48.75</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>195</td>
<td>48.75</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>195</td>
<td>48.75</td>
</tr>
<tr>
<td>100</td>
<td>195</td>
<td>48.75</td>
<td>48.75</td>
</tr>
</tbody>
</table>
為取代膠結料 25%，最低取代膠結料 50%。當 W/B 為 1.1、1.3 及 1.5 及取代膠結料 0% 時，氧化碴取代不同比例細骨材之 1 天抗壓強度皆可達到 5 kg/cm²，符合預定的設計目標，但隨著還原碴取代膠結料愈高，所獲得之抗壓強度相對降低。難添加速凝劑於 CLSM 中，由於還原碴本身膠結能力差且具斥水現象，使得添加速凝劑無法發揮早強的功能，添加還原碴量愈高，其抗壓強度相對降低。當氧化碴取代細骨材 0% 時，氧化碴取代的抗壓強度皆可達到 5 kg/cm²，符合預定的設計目標。在 28 天抗壓強度方面，大部分皆低於 30 kg/cm²，顯示早強型不銹鋼爐碴 CLSM 在 28 天的抗壓強度能符合預期目標，對於未來工程的再開挖性是有利的。本研究之 CLSM 材料水泥用量低，具有降低成本之經濟功用。

3.3 CLSM 超音波波速與反彈錘數

圖 4(a) 為氧化碴取代不同比例細骨材之一般型 CLSM 超音波發展情形，其相關係數 R² 均介於中度至高度相關間，具有良好的相關性；圖 4(b) 為氧化碴取代不同比例細骨材早強型 CLSM 之超音波發展情形，其相關係數 R² 均在高度相關間，具有高度的相關性，氧化碴取代細骨材量愈大，則一般型與早強型不銹鋼爐碴 CLSM 超音波波速愈高。

<table>
<thead>
<tr>
<th>配比材料(kg/m³)</th>
<th>W</th>
<th>C</th>
<th>SSRS</th>
<th>F</th>
<th>G</th>
<th>S</th>
<th>SSORS</th>
<th>AE</th>
<th>速凝劑</th>
</tr>
</thead>
<tbody>
<tr>
<td>還原碴取代比例(%)</td>
<td>0</td>
<td>136.37</td>
<td>97.5</td>
<td>0</td>
<td>32.5</td>
<td>520</td>
<td>1040</td>
<td>0</td>
<td>0.13</td>
</tr>
<tr>
<td>50</td>
<td>136.37</td>
<td>97.5</td>
<td>0</td>
<td>32.5</td>
<td>520</td>
<td>520</td>
<td>520</td>
<td>0.13</td>
<td>6.5</td>
</tr>
<tr>
<td>100</td>
<td>136.37</td>
<td>97.5</td>
<td>0</td>
<td>32.5</td>
<td>520</td>
<td>0</td>
<td>1040</td>
<td>0.13</td>
<td>6.5</td>
</tr>
<tr>
<td>氧化碴取代比例 (%)</td>
<td>0</td>
<td>136.37</td>
<td>73.12</td>
<td>24.38</td>
<td>32.5</td>
<td>520</td>
<td>520</td>
<td>520</td>
<td>0.13</td>
</tr>
<tr>
<td>1.1</td>
<td>25</td>
<td>136.37</td>
<td>73.12</td>
<td>24.38</td>
<td>32.5</td>
<td>520</td>
<td>520</td>
<td>520</td>
<td>0.13</td>
</tr>
<tr>
<td>100</td>
<td>136.37</td>
<td>73.12</td>
<td>24.38</td>
<td>32.5</td>
<td>520</td>
<td>0</td>
<td>1040</td>
<td>0.13</td>
<td>6.5</td>
</tr>
<tr>
<td>0</td>
<td>136.37</td>
<td>48.75</td>
<td>48.75</td>
<td>32.5</td>
<td>520</td>
<td>1040</td>
<td>0</td>
<td>0.13</td>
<td>6.5</td>
</tr>
<tr>
<td>100</td>
<td>136.37</td>
<td>48.75</td>
<td>48.75</td>
<td>32.5</td>
<td>520</td>
<td>0</td>
<td>1040</td>
<td>0.13</td>
<td>6.5</td>
</tr>
<tr>
<td>0</td>
<td>162.4</td>
<td>97.5</td>
<td>0</td>
<td>32.5</td>
<td>520</td>
<td>1040</td>
<td>0</td>
<td>0.13</td>
<td>6.5</td>
</tr>
<tr>
<td>1.3</td>
<td>25</td>
<td>162.4</td>
<td>97.5</td>
<td>0</td>
<td>32.5</td>
<td>520</td>
<td>520</td>
<td>520</td>
<td>0.13</td>
</tr>
<tr>
<td>100</td>
<td>162.4</td>
<td>97.5</td>
<td>0</td>
<td>32.5</td>
<td>520</td>
<td>0</td>
<td>1040</td>
<td>0.13</td>
<td>6.5</td>
</tr>
<tr>
<td>0</td>
<td>162.4</td>
<td>48.75</td>
<td>48.75</td>
<td>32.5</td>
<td>520</td>
<td>1040</td>
<td>0</td>
<td>0.13</td>
<td>6.5</td>
</tr>
<tr>
<td>100</td>
<td>162.4</td>
<td>48.75</td>
<td>48.75</td>
<td>32.5</td>
<td>520</td>
<td>0</td>
<td>1040</td>
<td>0.13</td>
<td>6.5</td>
</tr>
<tr>
<td>0</td>
<td>188.37</td>
<td>97.5</td>
<td>0</td>
<td>32.5</td>
<td>520</td>
<td>1040</td>
<td>0</td>
<td>0.13</td>
<td>6.5</td>
</tr>
<tr>
<td>1.5</td>
<td>25</td>
<td>188.37</td>
<td>97.5</td>
<td>0</td>
<td>32.5</td>
<td>520</td>
<td>520</td>
<td>520</td>
<td>0.13</td>
</tr>
<tr>
<td>100</td>
<td>188.37</td>
<td>97.5</td>
<td>0</td>
<td>32.5</td>
<td>520</td>
<td>0</td>
<td>1040</td>
<td>0.13</td>
<td>6.5</td>
</tr>
</tbody>
</table>

Table 2 Mixture proportions of early type CLSM containing stainless steel slag.
不銹鋼爐碴含量對 CLSM 材料抗壓強度之影響

\[y = 1.1197x + 16.931 \]
\[R^2 = 0.5969 \]

\[y = 0.352x + 12.592 \]
\[R^2 = 0.3187 \]

圖 1 不銹鋼爐碴 CLSM 之坍(流)度與修正流度相關性。

Figure 1 Relationship between slump and modified slump of CLSM containing stainless steel slag.
圖 5 為還原碴在取代不同比例膠結料之一般型與早強型 CLSM 之超音波發展趨勢。結果顯示還原碴取代黃色相較多，於各齡期之超音波波速值均呈現下降現象。還原碴取代量愈多時，還原碴與骨材結合會產生較多孔隙並且不緻密，導致超音波波速傳導速率降低。但多孔隙且鬆散骨材結構亦符合 CLSM 之低密度特性。圖 6 為不銹鋼爐碴 CLSM 之超音波與抗壓強度關係趨勢，結果顯示超音波波速與抗壓強度成正比關係，具有非常高相關性，故利用超音波檢測作爲不銹鋼爐碴 CLSM 強度之初步評估

表 3 一般型不銹鋼爐碴 CLSM 工程性質分析。

<table>
<thead>
<tr>
<th>W/B</th>
<th>還原碴取代比例 (%)</th>
<th>氧化碴取代比例 (%)</th>
<th>坍度 (cm)</th>
<th>坍流度 (cm)</th>
<th>抗壓強度 (kg/cm²)</th>
<th>初凝 (min)</th>
<th>修正流度 (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>0</td>
<td></td>
<td>18.25</td>
<td>25</td>
<td>6.54</td>
<td>23.63</td>
<td>345</td>
</tr>
<tr>
<td></td>
<td>50*</td>
<td></td>
<td>26.25</td>
<td>46.5</td>
<td>8.88</td>
<td>29.51</td>
<td>420</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td></td>
<td>22.25</td>
<td>44</td>
<td>9.91</td>
<td>22.52</td>
<td>310</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td></td>
<td>20.25</td>
<td>40</td>
<td>7.34</td>
<td>34.23</td>
<td>260</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td>25</td>
<td>9.25</td>
<td>15</td>
<td>4.13</td>
<td>20.87</td>
<td>680</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50</td>
<td>22.75</td>
<td>36.5</td>
<td>4.38</td>
<td>22.84</td>
<td>520</td>
</tr>
<tr>
<td></td>
<td></td>
<td>75</td>
<td>21</td>
<td>42.5</td>
<td>4.64</td>
<td>15.78</td>
<td>315</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>25.5</td>
<td>46.75</td>
<td>2.33</td>
<td>31.8</td>
<td>330</td>
</tr>
<tr>
<td>50</td>
<td></td>
<td>0</td>
<td>2.75</td>
<td>22.25</td>
<td>2.01</td>
<td>8.86</td>
<td>700</td>
</tr>
<tr>
<td></td>
<td>50*</td>
<td>24.75</td>
<td>60</td>
<td>1.84</td>
<td>11.76</td>
<td>870</td>
<td>28.25</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>19</td>
<td>37</td>
<td>2.35</td>
<td>8.5</td>
<td>515</td>
<td>22.5</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>23.25</td>
<td>46.25</td>
<td>1.26</td>
<td>23.03</td>
<td>350</td>
<td>17.75</td>
</tr>
<tr>
<td>1.3</td>
<td>50</td>
<td></td>
<td>14.5</td>
<td>21.75</td>
<td>2.12</td>
<td>20.45</td>
<td>445</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>50*</td>
<td>26.25</td>
<td>52.5</td>
<td>2.47</td>
<td>22.15</td>
<td>410</td>
</tr>
<tr>
<td></td>
<td></td>
<td>75</td>
<td>22</td>
<td>45</td>
<td>8.59</td>
<td>27.2</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>26.5</td>
<td>59.75</td>
<td>2.18</td>
<td>23.07</td>
<td>410</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>22.25</td>
<td>35</td>
<td>1.38</td>
<td>9.97</td>
<td>630</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50*</td>
<td>28</td>
<td>61</td>
<td>1.27</td>
<td>14.44</td>
<td>550</td>
</tr>
<tr>
<td></td>
<td></td>
<td>75</td>
<td>20</td>
<td>53</td>
<td>3.9</td>
<td>14.56</td>
<td>360</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>22.5</td>
<td>48.25</td>
<td>1.53</td>
<td>17.77</td>
<td>440</td>
</tr>
<tr>
<td>50</td>
<td></td>
<td>0</td>
<td>21.75</td>
<td>36.25</td>
<td>0.69</td>
<td>6.79</td>
<td>850</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50*</td>
<td>23.5</td>
<td>43.5</td>
<td>1.03</td>
<td>9.3</td>
<td>800</td>
</tr>
<tr>
<td></td>
<td></td>
<td>75</td>
<td>20</td>
<td>50</td>
<td>1.6</td>
<td>5.55</td>
<td>745</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>24</td>
<td>52.25</td>
<td>1.89</td>
<td>8.29</td>
<td>1000</td>
</tr>
<tr>
<td>1.5</td>
<td>0</td>
<td></td>
<td>21.75</td>
<td>34.75</td>
<td>1.72</td>
<td>18.91</td>
<td>500</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50*</td>
<td>25.5</td>
<td>51.25</td>
<td>2.75</td>
<td>26.64</td>
<td>510</td>
</tr>
<tr>
<td></td>
<td></td>
<td>75</td>
<td>20</td>
<td>46</td>
<td>5.91</td>
<td>21.33</td>
<td>315</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>22.25</td>
<td>45</td>
<td>3.32</td>
<td>33.58</td>
<td>500</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>14.75</td>
<td>24.5</td>
<td>1.49</td>
<td>9.06</td>
<td>580</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50*</td>
<td>24</td>
<td>55</td>
<td>1.38</td>
<td>11.8</td>
<td>570</td>
</tr>
<tr>
<td></td>
<td></td>
<td>75</td>
<td>17.5</td>
<td>45</td>
<td>4.13</td>
<td>17.6</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>22.25</td>
<td>49</td>
<td>0.75</td>
<td>12.43</td>
<td>540</td>
</tr>
<tr>
<td>50</td>
<td></td>
<td>0</td>
<td>9.75</td>
<td>20.25</td>
<td>0.46</td>
<td>4.53</td>
<td>930</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50*</td>
<td>24.5</td>
<td>59</td>
<td>0.24</td>
<td>5.58</td>
<td>540</td>
</tr>
<tr>
<td></td>
<td></td>
<td>75</td>
<td>20.5</td>
<td>53.5</td>
<td>1.27</td>
<td>7.45</td>
<td>350</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>21.75</td>
<td>53.25</td>
<td>0.84</td>
<td>9.43</td>
<td>780</td>
</tr>
</tbody>
</table>

備註：* 表示符合下述條件：坍度 > 20 cm；坍流度 > 40 cm；28 天抗壓強度 < 30 kg/cm²；漿體與骨材無析離現象。修正流度值 > 20 cm 爲高流動性。一般型不銹鋼爐碴 CLSM 凝結時間在 4 ~ 16.7 小時。
不銹鋼爐碴含量對 CLSM 材料抗壓強度之影響

估實為可行，圖 7 為一般型及早強型不銹鋼爐碴 CLSM 之抗壓強度與反彈錘數關係，結果顯示不銹鋼爐碴 CLSM 之相關係數 R² 分別為 0.6923 與 0.7301，均屬於良好的相關性，即可利用低強度反彈錘作爲不銹鋼爐碴 CLSM 初步強度評估。而圖中後半段抗壓強度與低強度反彈錘點位，較前半段的點位趨勢有發散情形，研判其原因為當還原碴取代膠結料大於 50%後，其抗壓強度不高；加上氧化碴取代細骨材後，使得反彈錘因打擊到比重較大之氧化碴而升高，造成後半段之發散情形。

4. 結論

本研究係探討以不銹鋼氧化碴取代細骨材及以不銹鋼還原碴取代膠結料，對 CLSM 抗壓強度發展之影響，經由實驗結果與分析獲得以下結論：
1. 利用不銹鋼氧化碴與不銹鋼還原碴製作之 CLSM，抗壓強度大於 50% 時，水/漿體 < 1.1；氧化碴取代細骨材 50%；水/漿體為 1.3、1.5，還原碴取代細骨材 0%、25%與 50%時，氧化

表 4 早強型不銹鋼爐碴 CLSM 工程性質分析。

<table>
<thead>
<tr>
<th>W/B</th>
<th>還原碴取代比例(%)</th>
<th>氧化碴取代比例(%)</th>
<th>坍度(cm)</th>
<th>坍流度(cm)</th>
<th>1天抗壓強度(kg/cm²)</th>
<th>28天抗壓強度(kg/cm²)</th>
<th>初凝(min)</th>
<th>修正流度(cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>0</td>
<td>25</td>
<td>21.25</td>
<td>30.25</td>
<td>8.65</td>
<td>22.45</td>
<td>385</td>
<td>15.25</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td></td>
<td>23.75</td>
<td>41.5</td>
<td>6.19</td>
<td>37.36</td>
<td>335</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td></td>
<td>22</td>
<td>37</td>
<td>5.04</td>
<td>31.68</td>
<td>245</td>
<td>19.25</td>
</tr>
<tr>
<td>1.3</td>
<td>0</td>
<td>25</td>
<td>15</td>
<td>22</td>
<td>2.41</td>
<td>17.99</td>
<td>460</td>
<td>9.25</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td></td>
<td>20.75</td>
<td>28.25</td>
<td>2.18</td>
<td>30.77</td>
<td>355</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td></td>
<td>22.75</td>
<td>41.5</td>
<td>4.41</td>
<td>23.44</td>
<td>280</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>0*</td>
<td>25</td>
<td>11.5</td>
<td>19.5</td>
<td>0.99</td>
<td>12.1</td>
<td>610</td>
<td>10.25</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td></td>
<td>22.75</td>
<td>39.75</td>
<td>1.01</td>
<td>9.79</td>
<td>330</td>
<td>24.75</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td></td>
<td>22.75</td>
<td>49.5</td>
<td>2.87</td>
<td>12.69</td>
<td>270</td>
<td>22.5</td>
</tr>
<tr>
<td>1.5</td>
<td>25</td>
<td>0</td>
<td>21.5</td>
<td>35.5</td>
<td>3.9</td>
<td>18.25</td>
<td>425</td>
<td>14.75</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td></td>
<td>20.5</td>
<td>45</td>
<td>5.16</td>
<td>23.64</td>
<td>400</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td></td>
<td>21.75</td>
<td>56</td>
<td>4.42</td>
<td>15.96</td>
<td>470</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>0*</td>
<td>25</td>
<td>9</td>
<td>18.75</td>
<td>2.33</td>
<td>10.23</td>
<td>490</td>
<td>8.75</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td></td>
<td>17</td>
<td>23.5</td>
<td>2.95</td>
<td>15.27</td>
<td>460</td>
<td>12.75</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td></td>
<td>18.5</td>
<td>38</td>
<td>4.46</td>
<td>16.48</td>
<td>400</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>0*</td>
<td>25</td>
<td>22</td>
<td>47.5</td>
<td>4.23</td>
<td>16.23</td>
<td>435</td>
<td>22.25</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td></td>
<td>21.5</td>
<td>53.5</td>
<td>5.8</td>
<td>24.82</td>
<td>265</td>
<td>29.5</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td></td>
<td>18.5</td>
<td>44</td>
<td>6.76</td>
<td>20.63</td>
<td>215</td>
<td>20.5</td>
</tr>
<tr>
<td></td>
<td>0*</td>
<td>25</td>
<td>23</td>
<td>43.5</td>
<td>3.61</td>
<td>11</td>
<td>340</td>
<td>18.25</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td></td>
<td>24.5</td>
<td>41.5</td>
<td>4.5</td>
<td>16.92</td>
<td>345</td>
<td>24.5</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td></td>
<td>25.5</td>
<td>57.5</td>
<td>5.1</td>
<td>24.19</td>
<td>475</td>
<td>31.5</td>
</tr>
<tr>
<td></td>
<td>0*</td>
<td>25</td>
<td>23.75</td>
<td>38.75</td>
<td>1.2</td>
<td>5.56</td>
<td>565</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td></td>
<td>25</td>
<td>46</td>
<td>1.63</td>
<td>8.62</td>
<td>475</td>
<td>33.25</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td></td>
<td>17.5</td>
<td>44.75</td>
<td>1.44</td>
<td>7.48</td>
<td>690</td>
<td>26.25</td>
</tr>
</tbody>
</table>

備註：* 表示符合下述條件：坍度 > 20 cm；坍流度 > 40 cm；1天抗壓強度 > 5 kg/cm²；28天抗壓強度 < 30 kg/cm²；漿體與骨材無析離產生。修正流度值 > 20 cm 為高流動性，早強型不銹鋼爐碴 CLSM 凝結時間在 3.6 ~ 11.5 小時。
化碴取代細骨材 50%，均可符合一般型不銹鋼爐碴 CLSM 性質標準。
3. 水膠比 W/B 爲 1.3，還原碴取代細骨材 0%時，氧化碴取代細骨材 0%與 50%；氧化碴取代細骨材 0%及還原碴取代細骨材 0%；水膠比 W/B 爲 1.5 及氧化碴取代細骨材 0%時，氧化碴取代細骨材 50%；氧化碴取代細骨材 0%，均可符合早強型不銹鋼爐碴 CLSM 性質標準。
4. 一般型與早強型不銹鋼爐碴 CLSM 之坍(流)度與修正流度關係，相關性屬於較佳。
5. 不銹鋼爐碴 CLSM 氧化碴取代細骨材愈高，其超音波波速亦隨之升高，而凝結時間相對減少。
6. 還原碴取代細骨材愈高，凝結時間隨之延長，所得之抗壓強度與超音波波速則相對降低。
7. 不銹鋼爐碴 CLSM 之抗壓強度與反彈錘數相關係數 R² 分別為 0.6923 與 0.7301，屬於良好相關性，即可利用低強度反彈錘作為不銹鋼爐碴 CLSM 初步強度評估。
8. 利用超音波、反彈錘數與抗壓強度所建立之相關模，可於獲得高度相關性，顯示利用超音波與反彈錘初步評估不銹鋼爐碴 CLSM 之強度實為可行。

圖 2 還原碴取代不同比例細骨材一般型 CLSM 之抗壓強度。

Figure 2 Compressive strength of general type CLSM containing stainless steel slag.
不銹鋼爐碴含鈹對 CLSM 材料抗壓強度之影響

誌謝
感謝國科會專題研究計畫(NSC 94-2211-E-151-011)提供研究費用。

參考文獻
1. ACI 229R-94 Report, "Controlled Low Strength Materials (CLSM)", Concrete International (1994) 55 ~ 64.
2. 沈永年、王和源、林仁益、郭文田，in："混凝土技術"(ISBN 957-21-4045-X)，全華圖書(台北，2006)，第 723～733 頁。

图 3 还原碴取代不同比例胶结料早强型 CLSM 之抗壓強度。

Figure 3 Compressive strength of early type CLSM containing stainless steel slag.

7. 沈永年、鍾文豪, “不銹鋼爐碴含量對 CLSM 材料工作性之影響”, 防蝕工程, 第 21 卷第 1 期, 2007 年, 第 49 ~ 56 頁。

收到日期：2006 年 8 月 17 日
修正日期：2007 年 10 月 9 日
接受日期：2008 年 5 月 6 日

(a) RS=0

(b) RS=25

(c) RS=50

(a) 一般型 (b) 早強型

圖 4 氧化碴取代不同比例細骨材 CLSM 之超音波發展情形。

Figure 4 Ultrasonic velocity of CLSM containing stainless steel slag (SSOS replacement sand)
不銹鋼爐碴含量對 CLSM 材料抗壓強度之影響

(a) 一般型
(b) 早強型

圖 5 還原碴取代不同比例膠結料 CLSM 之超音波發展情形。

Figure 5 Ultrasonic velocity of CLSM containing stainless steel slag (SSRS replacement binder).
圖 6 不銹鋼爐碴 CLSM 之超音波與抗壓強度關係。
Figure 6 Relationship between compressive strength and ultrasonic velocity of CLSM containing stainless steel slag.
不銹鋼爐碴含量對 CLSM 材料抗壓強度之影響

![Graph](image_url)

(a) 一般型

(b) 早強型

圖 7 不銹鋼爐碴 CLSM 之抗壓強度與反彈錘數關係。

Figure 7 Relationship between compressive strength and rebound harman of CLSM containing stainless steel slag.

$y = 0.0591x^{1.4691}$

$R^2 = 0.6923$

$y = 0.063x^{1.4822}$

$R^2 = 0.7301$