Initiation and Growth of Stress Corrosion Cracking
on Inconel 600TT Alloy
S. C. Lin1,*, M. S. Yu1, and C. C. Wang2

ABSTRACT

The piling up of sludge between heat exchange tube and Tube Sheet or Tube Support Plate is one of the primary root causes for Outside Diameter Stress Corrosion Cracking (ODSCC) on steam generator tubings. Examination of crack initiation time and measurement of crack growth rate of Stress Corrosion Cracking (SCC) for the Inconel 600TT alloy are conducted in the condensing simulation secondary side water environments.

The Intergranular Attack/Stress Corrosion Cracking (IGA/SCC) is found on the surface of samples. The result show that the benefits is quite low to reduce the crack initiation time while lowering operation temperature. In the mean time, degraded tubes are tested for 5504 hours in a
condensed environment of which concentration factor 106 times applied to calculate the simulated water condition according to the analysis result of hide out return. The crack growth rate for crack length on tube surface by OM and ECT inspection is from 7.3 x 10^{-3} \mu m/hr to 4.9 x 10^{-3}. The evaluation of crack growth rate for crack depth by AES examination is in the range of 4.2 x 10^{-3} to 1.3 x 10^{-2} \mu m/hr. It will be verified by more examinations.

Keywords: Inconel 600TT alloy; IGA / SCC; crack initiation; crack growth rate.

一、前言

錳基600TT合金(Inconel 600TT)取代錳基600MA合金(Inconel 600MA)作為蒸汽產生器之管束材料是要解決管束於管板(Tube Sheet)與管支撐板(Support Plate)處發生二次應力腐蝕龜裂的問題。

由文獻顯示[1,2]堆積在管束與管板或是管支撐板間的銹垢，在高溫下形成濃縮環境，加上殘留應力及負荷應力的相互作用，是使錳基600MA合金熱交換管外表面產生應力腐蝕龜裂的主要原因。在電廠實際運轉之經驗及實驗室之研究結果[3,4]均顯示錳基600TT合金在強硫化環境中均較錳基600MA合金有較高抗應力腐蝕龜裂的能力。

由近來已有電廠陸續發現使用英高錳600TT合金材質之蒸汽產生器管束有一次及二次應力腐蝕龜裂等劣化之問題顯示錳基600TT合金長時間在二次側水質條件下仍會造成應力腐蝕龜裂的現象。

本實驗進行劣化試驗與應力腐蝕裂縫成長速率兩個實驗。劣化試驗在於評估核電廠二次側水質環境(溫度、水質濃度、電力)對蒸汽產生器管束的壽命的影響，尤其是運轉溫度的影響，更是未來評估降低運轉重要之依據。

測試的水質環境是根據核電廠之蒸汽產生器管束材料之質環境[5]，將直徑17.45 mm(1/16")、壁厚為1.01 mm(0.04")的英高錳600合金無縫管，經704°C/15 h時，空冷之熱

-384-
鎳基 600TT 合金應力腐蝕裂紋起始與成長之研究

處理程序，製成鎳基 600TT 合金。英高鎳 600 合金
無縫管之化學組成成分與熱處理前後之拉伸性質如
表 1。

2-2.2 劣化起始

2-2-1 C 型試樣準備

依 ASTM 規範[1]製作鎳基 600TT 合金 C 型試
樣，並在試樣上施加 600 μ ε (0.4 Y.S.)、900 μ ε
(0.6 Y.S.)、1200 μ ε (0.8 Y.S.) 與 10000 μ ε (1%
Strain) 等固定應變。施加應變後的 C 型試樣放入濃
縮一萬倍模擬水質中進行靜態劣化起始實驗。

測試環境是根據核電廠停機時最接近蒸汽產生器採
樣分析及試樣回溯的結果[2]，以水質中所含物質成分
c 成份濃縮一萬倍，作為模擬管壁材料與蒸汽產生器
管束間的環境，進行劣化起始測試。試樣回溯分
析結果與濃縮萬倍水質成分表如表 2。並於水質中
添加氯化鉻 (NH₄OH)，以控制常溫下水質之 pH
值約等於 9.3 ～9.5 及通入氯化氫氣體中溶氧量降低至
小於 5ppb，以消除約二次側水質規範[3]。

為加速實驗之進行，因此將測試溫度設定在
300℃、320℃ 和 340℃ 再以差分法決定再側 280
℃之劣化起始溫度。測試之條件如表 3。

實驗後之試樣以光學顯微鏡進行表面觀察。以
確定裂紋起始之時間。並對已產生裂紋的試樣進
行觀察，檢視裂紋是否會繼續延展。

2-3 管件之裂紋成長速率

2-3-1 劣化的管件

選擇兩支已存在于汽車廢棄物之英高鎳 600TT
合金管束進行裂紋成長之試驗。其中軸向裂紋為編
號 A31 管束及周向裂紋為編號 NC17 管束。

兩支劣化管件之裂紋深度在 288 °C 飽和壓力之
40% NaOH + 30g/l Cu₂O 溶液中產生。劣化管件之製
作方法及設備請參考余明昇之資料[4]。

測試前後，以渦流電流檢測及顯微檢查，確定裂
紋是否成長。而以顯微電子顯微鏡測裂紋尖端鈷
(Cr) 元素之含量，以評估裂紋成長的長度及裂紋成
長率。

2-3-2 系統安裝

將兩支劣化管束裂紋上置於模擬支承板四週形
孔之固定環，安裝於蒸汽產生器模擬系統中。系統
之示意圖請見圖一。在安装劣化管件時，將 A31 管
件（軸向裂紋）置於一次側水首先進入之管件，而
NC17 管件（周向裂紋）置於其後。

在蒸汽產生器模擬系統中，高溫高壓下一次側水
使劣化管束內壓力維持在 2250psi。溫度為 326°C(A31)
及 301°C(NC17)，流速約為 70 cc/min。這模擬蒸
汽產生器一次側水入口之熱端 (Hot leg) 區域的環
境。

為縮短實驗時間，測試之管外水質濃度增加到
百萬倍。溫度為 280°C，壓力為 1100 psi。水質之成
份是根據核電廠蒸汽產生器環路中回溯分析結果，
經由 MULTEQ[5]程式計算所獲得。在重複濃縮百萬
倍內含物水中，水中雜質的含量是以 Cl⁻、SO₄²⁻
及 K⁺ 作為濃縮的基準的。除去之水質之 pH 值為約
10.3，由 MULTEQ 程式之計算結果及實際的重複成
份如表 4。

試驗後再將裂紋剖開，以掃描式電子顯微鏡
(SEM) 進行裂紋表面觀察，確定裂紋成長的長度。並以歐傑
電子顯微鏡 (Auger Electric Spectroscope，AES) 分析
鈷元素之濃度來找出裂紋及再成長裂紋之界線來
計算在模擬系統中之裂紋成長速率。

三、結果與討論

3-1 裂紋起始

受到不同應變的 C 型試樣置於一萬倍模擬物
回溯分析水質環境之高壓釜中，在 300°C、320°C
及 340°C 條件下有裂紋種類出現。裂紋發生於 C
型試樣曲率最大處，其方向與施力螺絲垂直，為管
件之軸向裂紋。裂紋之類型如圖二。

由目前的數據來看，在 340°C 下發現裂紋最短
的時間約為 894 小時，320°C 最短的時間約為 1109
小時，而在 300 ℃時發現裂紋起始的時間約為 1218 小時。在濃縮一萬倍回熱液體物質中試驗下，裂紋起始的延遲時間有隨溫度的降低而增長的趨勢。但是在長時間的試驗下，試樣所受到的應變量與裂紋起始時間的關係則變得不明顯。其原因尚在進一步研究中。

將已發現裂紋的試樣再置入相同的條件下繼續試驗及長時間觀察，期望可以觀察到裂紋長度向軸向擴展的現象。但是，目前的實驗結果顯示，裂紋的長度並沒有隨時間之增而向軸向擴展。但裂紋的開口時間之增大而延遲時間而縮短，裂紋延長。

本實驗所使用的濃縮一萬倍水質條件是根據核電廠蒸汽產生器活動物質回流分析結果所調製，應是較接近真實的環境。由裂紋的縱剖面可以觀察到裂紋長度只有大約為 5 μm，至今仍可觀察到裂紋表面的應力與裂紋起始時間之間沒有明顯的關係。

3-1-1 降溫運轉之評估

裂紋起始的延遲時間會隨降低運轉溫度而延長。然而對核電而言，降低運轉溫度可能會減小發電的效能。因此，由裂紋的延遲時間延長之比率可以作為評估的參考。

在固定的腐蝕環境中，裂紋起始時間與溫度之間可以用 Arrhenius 關係式來表示 1。

\[
\frac{1}{t} = \frac{Q}{RT} + C
\]

其中 t 為裂紋起始時間，Q 為在溫度 T (K) 時，使裂紋起始之活化能。R 為氣體常數值 (8.3144 J/mole·K)。

將相同應力條件（1% Strain、0.8YS）裂紋起始時間與溫度在 Arrhenius 關係式計算 300℃、320℃及 340℃活化能 Q 將裂紋起始時間取自然對數後與絕對溫度之倒數對數列於圖 3 中。由線性方程式之斜率可得活化能 Q 值。1% Strain 及 45.66 kJ/mole；0.8YS 為 14.01 kJ/mole。

由以上統計求得之線性方程式外推估算運轉溫度由 280℃降溫至 277℃（二次側溫度）時，裂紋起始時間延長之比例；1% Strain 時為 1.056；0.8% Y.S. 時為 1.017。請見表 5。

由此結果可知，在濃縮一萬倍回熱物質回流分析水質條件下，此裂紋表現高應變的環境下，運轉溫度降低 3℃，裂紋起始延長時間延長但不顯著。當應變減大，其比值亦縮小。因此，初步推斷在目前的實驗條件下，若蒸汽產生器之運轉溫度降低 3℃，對延長裂紋起始之延長並不顯著。若在更高濃度之腐蝕條件下運轉溫度的延長乃會增加。此試驗將延長進行測試，以得到更多的數據進行推斷。

3-2 裂紋之成長

A31 (軸向裂紋) NC17 (圓周向裂紋) 於模擬二次側水質環境中進行裂紋成長試驗共 5504 小時。以光學顯微鏡檢查及非破壞性檢測法，將裂紋作初步觀察，比較試驗前後之裂紋長度，判定裂紋成長之現象後，再拆除裂紋，以 SEM 及 AES 進行裂紋表面之觀察及深度測量。

3-2-1 光學顯微鏡檢查

結果發現 A31 管束表面之軸向裂紋及裂孔均有成長的跡象，其為 73、92 及 98 處之裂紋長度之統計請見表 6。圖 4 顯示於標距 98 處實驗前後裂紋長度之比較。

表面裂紋沿軸向長度約在 0.04 至 0.27 mm 之間，裂紋成長速率為 4.9 × 10⁻² μm / hr. 至 7.3 × 10⁻³ μm/hr. 之範圍。NC17 管束表面之圓周向裂紋中，其為 60mm 處之裂紋沿圓周向長度約 0.1 mm，裂紋成長速率約為 1.82 × 10⁻³ μm / hr.。

由此觀察可以初步判斷兩支管束之裂紋均有成長，且有圖 4 視裂紋沿管束表面之裂紋成長速率較圓周向裂紋大。這個現象可能是因為在模擬蒸汽產生器環境系統中管束內外之壓力差與溫度差所造成之環境力 (Hoop Stress) 塑性周向裂紋成長之貢獻較低所致。目前在表面觀察同一支管束上之裂紋成長之長度不同，甚至 NC17 管束上 M60 裂紋有成長而 M70 裂紋沒有成長，這個原因是否與裂紋深度或長度有

-386-
3-2-2 非破壊渦流電流検査

以PlusPoint MRPC 探頭、頻率 250KHz 檢測兩支劣化管束。結果發現兩支管束上原有的裂縫均有成長，評估成長之深度大約在 5% 以下，然而以目前的探頭來評估裂縫深度，其精確度亦僅達 5%，故此細小之裂縫成長變化，應以其他檢測方法加以確認。

3-2-3 裂縫表面之觀察及深度量測

由 A31 管束上採取裂縫位置 A31-a 及 A31-b，沿裂縫方向進行裂縫表面之觀察及深度量測。圖五是將 A31-a 裂縫切割後，由掃描式電子顯微鏡觀察之結果。a) 以清楚的觀察到 penny type 之弧形裂縫及分辞性裂縫的邊界，裂縫之軸向長為 7 mm，最大深度約為 0.41 mm。b) 剪斷面呈現典型的晶粒破壞模式。

(1) 及 (d) 為裂縫最大深度處，可清楚見到裂縫的邊界。由圖六中可以量測到 A31-b 裂縫之軸向長為 7 mm，最大深度約為 0.38 mm。

由於產生預裂縫之使用高濃度 NaOH 之溶液會造成接觸表面之銅金屬溶出，因此，一般研究者(Takamatsu*) 使用測試電子之濃縮分析計，粒上銅元素濃度，觀察在裂縫前後銅元素濃度開始升高的位置，藉以判定由測試製作之預裂縫及在全剖繪 (AWT) 試驗中再成長裂縫之界線，進而推算在模擬系統中之裂縫成長速率。

由照片上之第 10 點開始銅元素之濃度開始上昇，至第 12 點後銅元素至高點。因此由表元法之濃度推算此裂縫在模擬系統中之裂縫成長長度為 0.07 mm。5504 小時之裂縫成長速率約為 1.27 × 10^-3 μm/hr。

(1) 將 A31-b 裂縫上另隨以放大倍率由原 210 倍升高至 500 倍，再進行之銅元素之濃度分析，請見圖八。由照片上之第 5 點之後銅元素之濃度開始上升，至第 7 點後銅元素至高點。因此由銅元素濃度之位置推算此裂縫在模擬系統中之裂縫成長長度為 0.023 mm。5504 小時之裂縫成長速率約為 4.18 × 10^-3 μm/hr。由于應力腐蝕裂縫破面表面已經覆蓋細密的氧化層，測試電子之濃縮計銅元素濃度所得到的值會受到表面有機物質的影響。電子束分析位置的高低也會造成分析的誤差。因此，須以更多的數據來確定裂縫成長速率。

四、結論

(1) 在 300 °C, 320 °C 及 340 °C，一氧化碳物之腐蝕分析水質條件下，均無裂紋外觀到出現。當温度增高，發生裂紋的起始時間會愈短。

(2) 以統計力學條件 (1% Strain 及 0.8YS) 的試驗結果，由試驗所得到之 Q 值，1% Strain 為 45.66 kJ/mol；0.8YS 為 14.02 kJ/mol。

(3) 在一氧及混合物之腐蝕分析水質條件下，若蒸汽產生之系統溫度降低 3 °C，對延長裂縫起始之幫助不大。

(4) 比較實驗前後管束表面裂縫長度。推算 A31 管束表面裂縫沿軸向成長的裂縫成長速率在 7.3 × 10^-3 μm/hr 及 4.9 × 10^-3 μm/hr。範圍之間。NC17 管束表面之裂縫沿軸向裂縫成長速率約為 1.8 × 10^-3 μm/hr。

(5) 使用測試電子之濃縮分析計估計 A31-b 裂縫長度，並推算在濃縮百萬倍模擬二側水質中，裂縫成長速率約為 4.2 × 10^-3 μm/hr。1.3 × 10^-2 μm/hr。=

五、致謝

本文作者對徐秀生先生及張文帆先生在材料箱件之製作，吳慧敏先生在試樣製作及微觀觀察上之鼎力相助，特此致謝。
六、參考文獻

4. 湯冬珍與陳菊蓮，INER-T2439, 八十七年六月。
6. ASTM-B163-89.
7. ASTM-G38-73.
8. 核能發電訓練基本教材，第三核能發電廠，民73。

表1. 鋁合金 600 合金之成分及拉伸性質 (wt%.)

<table>
<thead>
<tr>
<th>C</th>
<th>Mn</th>
<th>Si</th>
<th>S</th>
<th>Cr</th>
<th>Cu</th>
<th>Fe</th>
<th>Ni</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.04</td>
<td>0.26</td>
<td>0.20</td>
<td>0.001</td>
<td>15.20</td>
<td>0.17</td>
<td>7.82</td>
<td>76.31</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Yield point (Mpa)</th>
<th>Tensile Strength (Mpa)</th>
<th>Elongation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>600MA</td>
<td>259.7</td>
<td>595.7</td>
</tr>
<tr>
<td>600TT</td>
<td>227.2</td>
<td>578.3</td>
</tr>
</tbody>
</table>

表2. 回報分析水質及濃縮萬倍水質成份表

<table>
<thead>
<tr>
<th>成份</th>
<th>Na</th>
<th>K</th>
<th>Ca</th>
<th>Mg</th>
<th>Cl</th>
<th>SO₄</th>
<th>SiO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>回報分析水質 (ppb)</td>
<td>7.8</td>
<td>2</td>
<td>45.2</td>
<td>7.9</td>
<td>3.98</td>
<td>6.1</td>
<td>113.1</td>
</tr>
<tr>
<td>一萬倍水質 (ppm)</td>
<td>78</td>
<td>20</td>
<td>452</td>
<td>79</td>
<td>39.8</td>
<td>61</td>
<td>1131</td>
</tr>
</tbody>
</table>

表3. C 型環氧試件

<table>
<thead>
<tr>
<th>測試水質</th>
<th>濃縮一萬倍溶液回報分析水質</th>
</tr>
</thead>
<tbody>
<tr>
<td>測試溫度</td>
<td>300°C, 320°C, 340°C</td>
</tr>
<tr>
<td>水質環境</td>
<td>O₂<5ppb, pH=9.3~9.55</td>
</tr>
<tr>
<td>應力範圍</td>
<td>0.4, 0.6, 0.8×Yield stress and 1% strain</td>
</tr>
</tbody>
</table>
表4. 百萬倍回質水質成分表
Table 4. Test condition of degraded tube by MULTEQ code.

<table>
<thead>
<tr>
<th>成分</th>
<th>Na</th>
<th>K</th>
<th>Ca</th>
<th>Mg</th>
<th>Cl</th>
<th>SO₄</th>
<th>SiO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>回質水質(ppm)</td>
<td>7.8</td>
<td>2.0</td>
<td>45.2</td>
<td>7.9</td>
<td>3.98</td>
<td>6.1</td>
<td>113.1</td>
</tr>
<tr>
<td>一百萬倍回質水質(ppm)</td>
<td>7800</td>
<td>2000</td>
<td>45200</td>
<td>7900</td>
<td>3980</td>
<td>6100</td>
<td>113300</td>
</tr>
<tr>
<td>溶度計水質(10⁶調配水質(ppm))</td>
<td>3650</td>
<td>1987</td>
<td>...</td>
<td>...</td>
<td>3970</td>
<td>2036</td>
<td>32100</td>
</tr>
</tbody>
</table>

表5. 估算當運轉溫度下降3℃時，裂紋起始時間延長之比例
Table 5. Estimation of crack initiation time when operation temperature drop 3℃.

<table>
<thead>
<tr>
<th>T(℃)</th>
<th>1/T*1000 (1/°K)</th>
<th>t (hr.)</th>
<th>1%Strain</th>
<th>0.8%Y.S.</th>
</tr>
</thead>
<tbody>
<tr>
<td>280</td>
<td>1.808</td>
<td>2602.0</td>
<td>1737.8</td>
<td></td>
</tr>
<tr>
<td>277</td>
<td>1.818</td>
<td>2746.8</td>
<td>1766.9</td>
<td></td>
</tr>
<tr>
<td>t₂₈₀เทคโนโลย學</td>
<td>1.056</td>
<td>1.017</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

表6. A31 管束表面裂縫成長速度估計
Table 6. Calculation of crack growth rate on A31 tubing surface.

<table>
<thead>
<tr>
<th>裂縫位置</th>
<th>實驗前長度 (mm)</th>
<th>實驗後長度 (mm)</th>
<th>成長長度 (mm)</th>
<th>裂縫成長速率 (μm/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>73</td>
<td>4.14</td>
<td>4.23</td>
<td>0.09</td>
<td>1.6E-02</td>
</tr>
<tr>
<td>92</td>
<td>2.16</td>
<td>2.28</td>
<td>0.12</td>
<td>2.2E-02</td>
</tr>
<tr>
<td>92</td>
<td>0.69</td>
<td>0.73</td>
<td>0.04</td>
<td>7.3E-03</td>
</tr>
<tr>
<td>92</td>
<td>1.65</td>
<td>1.69</td>
<td>0.04</td>
<td>7.3E-03</td>
</tr>
<tr>
<td>98</td>
<td>2.9</td>
<td>3.17</td>
<td>0.27</td>
<td>4.9E-02</td>
</tr>
<tr>
<td>98</td>
<td>1.33</td>
<td>1.4</td>
<td>0.07</td>
<td>1.3E-02</td>
</tr>
<tr>
<td>98</td>
<td>0.34</td>
<td>0.52</td>
<td>0.18</td>
<td>3.3E-02</td>
</tr>
</tbody>
</table>
Fig. 4. Crack growth on A31 tubing surface.

Fig. 5. The SEM micrograph of A31-a.

Fig. 6. The morphology of A31-b.

Fig. 7. The analysis of Cr concentration on A31-b crack front by AES.

Fig. 8. The analysis of Cr concentration on different position of A31-b crack front.