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ABSTRACT
Incidents of intergranular stress corrosion cracking (IGSCC) and irradiation-assisted stress corrosion cracking

(IASCC) of stainless steel components in the primary coolant circuits of boiling water reactors (BWRs) are occurring
with increasing frequency as the power reactors age. In the past decade, the HWC technique has been widely adopted
as a measure for mitigating IGSCC and IASCC in BWR vessel internal components. However, this technique is not
without problems. Along with the application of HWC is a shortcoming of exerting a high man-REM cost on the
operator due to elevated radiation fields. Furthermore, it is not at all clear that HWC is effective in protecting some
components against IGSCC, particularly for protecting in-vessel components that are exposed to high gamma and
neutron fields. Therefore, new technologies, such as inhibitive coatings, were brought into consideration to enhance the
effectiveness of HWC. In this study, experiments were conducted to investigate the effects of inhibitive coating with
TiO

2
, ZrO

2
, and ZrO(NO

3
)

2
by chemical immersion at 150 oC on Type 304 SS. Measurements of electrochemical

corrosion potential (ECP) and slow strain rate tensile (SSRT) tests in simulated BWR circulation loop to investigate the
effects of inhibitive coating with zirconium oxide and with a compound containing zirconium oxide on Type 304 . Test
results showed that the treated SS specimens exhibited lower ECP than the pre-oxidized specimen, and the specimens
exhibited lower ECP in higher than in lower hydrogen consumption. Increasing hydrogen concentration and treating
IPC both can reduce ECP. In the SSRT test results, all tested specimens showed less IGSCC in higher hydrogen
concentration, and had the longer elongation and fracture time. In the same water chemistry environments, pre-
oxidized one had less IGSCC, the lowest elongation and the shortest fracture time. The results indicated that IPC did
prolong the crack initial times to get longer fracture times, larger maximum fracture stress, and less second cracks. That
can provide protection against IGSCC.
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1. SSRT mm

Fig. 1. Dimension of the SSRT specimen (unit:mm).
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1 . 300 ppb SSRT 

Table 1. SSRT test results at 300 ppb dissolved oxygen.

2 . 300 ppb 10 ppb SSRT

Table 2. SSRT test results at 300 ppb dissolved oxygen

and 10 ppb dissolved hydrogen.

3 . 300 ppb 25 ppb SSRT

Table 3. SSRT test results at 300 ppb dissolved oxygen

and 25 ppb dissolved hydrogen.

(a)

(b)

(c)

2. 300 ppb SSRT Prefilm

(a) (b) IGSCC 

(c) (a) 

(b) IGSCC 

Fig. 2. Surface examinations by SEM after SSRT tests

at 300 ppb dissolved oxygen. (a) Fractured

surface (b) IGSCC (c) Secondary cracks on

lateral surface. The IGSCC area shown in (b)

is the circled region in (a).
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3. 300 ppb SSRT IPC-

ZrO
2

Fig. 3. Secondary cracks on lateral surface of the IPC-

ZrO
2
specimen at 300 ppb dissolved oxygen.

4. Evans Diagram

ECP 

Fig. 4. Evans Diagram showing a decreased redox

reaction rate which leads to an ECP decrease.

5. Evans Diagram

ECP

Fig. 5. Evans Diagram showing a decreased metal

oxidation rate which leads to an ECP decrease.

6. Prefilm 

ECP 

Fig. 6. ECPs of the prefilmed, IPC treated and pure Zr

specimens as a function of dissolved oxygen

concentration.
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7. Prefilm 

10 ppb ECP 

Fig. 7. ECPs of the prefilmed, IPC treated andpure Zr

specimens as a function of dissolved oxygen

concentration with 10 ppb dissolved hydrogen.

8. Prefilm 

25 ppb ECP 

Fig. 8. ECPs of the prefilmed, IPC treated and pure Zr

specimens as a function of dissolved oxygen

concentration with 25 ppb dissolved hydrogen.

9. Prefilm 

50 ppb ECP 

Fig. 9. ECPs of the prefilmed, IPC treated and pure Zr

specimens as a function of dissolved oxygen

concentration with 50 ppb dissolved hydrogen.
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10. AES X-ray Mapping 

Fig. 10. Spectroscopic image by AES X-ray Mapping

at the surface of an IPC treated specimens.

(a) IPC- ZrO
2

(b) IPC- ZrO(NO
3
)

2

(c) IPC- TiO
2

11. AES 

Fig. 11. Depth profile by AES for at the surface of an

IPC treated specimens.
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