防蝕工程 第十六卷第三期 第 209~218頁 民國91 年9月 Journal of Chinese Corrosion Engineering, Vol.16 No.3, PP. 209~218 (2002)

n-型(100)矽單晶的光電化學腐蝕研究

林景崎*、蔡志昌*、蕭文助*、賴建銘*、黃戎巖**

Photo-Electrochemical Corrosion on the n-type (100) Silicon Single Crystal

J.C.Lin*, C.C.Tsai*, W.C.Hsiao*, C.M.Lai*, Z.Y.Huang**

摘要

本論文以光電化學方法,在n-型(100)單晶砂上蝕刻獲得均匀之微米級孔洞。研究方法採 用直流電陽極動態極化法,在氟化物溶液中,探討添加劑、照光強度等參數對n-型(100)單晶 矽的陽極極化曲線的影響,進而在各種蝕刻液中找出最佳蝕刻參數。

動態陽極極化研究結果顯示:n-型(100)單晶矽試片在照光環境下,於C及D蝕刻液中均可 得到較快的腐蝕速率。而定電位蝕刻研究結果則顯示:孔洞生成速率以C蝕刻液最為快速,D蝕 刻液其次,但使用D蝕刻液所蝕刻出孔洞壁表面形態較平滑且均匀。

關鍵字:光電化學蝕刻、微孔洞、動態陽極極化分析

ABSTRACT

Photo-electrochemical etching of n-type (100) silicon single crystal in fluoride solution has been investigated. The etching rate of the silicon is enhanced in fluoride solution (aM) by addition of cM CC01. The etching rate is accelerated in the presence of UV-visible light. Anodic polarization of the photo-electrochemical system etched in fluoride solution demonstrated that the etching rate is affected by various additives. The etching rate of the n-type Si(100) in solution C (containing aM HF + cM CC01) is faster than that in any other solutions ($A \cdot B \cdot D$ and E). The pores etched in solution D (aM HF + dM CC02) show smooth morphology even the etching rate is slightly slower than in solution C.

Key words : photo-electrochemical etching ; anodic-polarization ; macro-pores

* 國立中央大學機械研究所

Department of Mechanical Engineering, National Central University, Chung-Li, Taiwan 320, R.O.C. ** 工業技術研究院機械研究所

Micro-Electro-Mechanical Systems Research Div., Mechanical Industry Research Laboratories, Industrial Technology Research Institute, Chu-Tung, Taiwan 310, R.O.C.

一、前言

微電子電路與微機械元件整合成為微機電系統 (Micro Electro-Mechanical System, MEMS)正是 目前最具發展的前瞻性研究領域【1】。目前微機電 系統之微製造技術包括:整合蝕刻(Etching)及薄 膜技術的矽微細加工、微光刻電鑄模造(LIGA)技 術、微機械加工技術等三類技術。【2】

矽晶圓加工為MEMS製程中重要的一環,依加 工深度區分為面型加工(Surface micro-machining) 及體型加工(Bulk micro-machining)【1】兩大 類。面型加工所處理材料的深度在5μm以下,而體 型加工所處理的材料則是在50μm以上。矽晶圓加 工技術依施工方法可區分成兩大類:(I)濕式蝕 刻技術與(II)乾式蝕刻技術。【2、3、4】

蝕刻遭遇的問題是:如何蝕刻深達數百微米或 蝕穿晶片而能維持所開圖樣(pattern)的線距及形 狀。濕式化學蝕刻會受限於晶圓方向及成本、產能 等生產因素,而乾式蝕刻技術則因設備成本昂貴及 保養不易,造成使用上的不便,因此低成本及易控 制的矽晶圓電化學蝕刻將具有極大的發展潛力。 【3、4】

在1990年代以前提出,主要電化學蝕刻的研究 多著重於:晶圓的減薄、抛光技術的研究以及n-型 單晶砂上多孔層(porous layer)的形成機理探討和 相關應用【5、12、14、15】。直到1990年德國物理 學家Lehmann利用電化學蝕刻技術在實驗室做出第 一個排列整齊的高密度巨型孔洞陣列【6】。

根據Lehmann的研究指出【6、7、9、10】:砂 晶片內電洞的分佈與移動、外加電壓、電流的控 制、蝕刻液配方等,對於孔洞形態、蝕刻速率的影 響甚鉅。依形成的孔洞直徑尺寸來分類,將會得到 微孔洞(microporous < 2nm)、中孔洞 (mesoporous, 2-50nm)及巨孔洞(marcoporous > 50nm)。並由實驗結果得知:巨型孔洞 (marcoporous > 50nm)的生成須在特定參數條件下 方可生成。 本研究之目的在利用電化學蝕刻方法,將n-型 (100) 矽單晶放入氫氟酸溶液中,加入添加劑、改 變照光強度等,希望尋求均匀蝕刻及獲得巨孔矩陣 排列之最佳電化學條件。

二、實驗

2.1試片規格

本研究選用n-tpye (100) 矽晶片,電阻率為4 ~7 ohm-cm做為電化學蝕刻多孔矽之基材。

2.2 試片前處理

前處理步驟包括1.試片清洗,2.光阻塗佈、顯影,3.異向蝕刻等如圖1(a)所示。以W_{xy(n)}作為試片編號,其中x值代表圖樣尺寸,且圖樣均為正方形; y表示圖樣與圖樣之間間距;如圖1(b)所示;試片編號後面加n,表示無氮化矽保護。經切割後,其試片 表面積為1x1 cm²。

2.3 蝕刻液調配

矽蝕刻所用蝕刻液以氫氟酸水溶液為主,其蝕 刻液種類如表1所示。

2.4 蝕刻設備

蝕刻槽以鐵氟龍塊材製成(80x50x60 cm³)內 置入100 ml蝕刻液,試片置於陽極,其浸入有效面 積0.64 cm²。

以白金片(純度99.99%)為陰極,矽單晶試片 為陽極,蝕刻槽外以恆溫槽控制蝕刻液溫度在 300K。以EG&G Model 263供應實驗所需電位,並 由電腦即時量測電流變化。照光設備為日商Moritex 50W、20000Lx(流明)的鹵素燈光源產生器,將自 試片背面照射,用以激發電子-電洞的重新排列。如 圖2所示。

2.5 蝕刻液之電化學法評選

實驗流程如圖3所示,將分別針對有經化學預蝕 刻試片及無經微影黃光製程試片,以(a)陽極動態 極化法(b)定電位蝕刻法,兩種直流電方法,進行 蝕刻液評估。

2.6 矩陣式排列孔洞製備

利用評選出蝕刻液進行定電位電化學蝕刻,於 在n-型矽單晶(100)平面上置備矩陣式排列巨型孔 洞。

2.7 蝕刻後表面狀態分析

以日本Hitachi,S-800掃描式電子顯微鏡(SEM) 觀測試片表面形貌變化。

三、結果

3.1 動態陽極極化分析結果

圖4(a)(b)分別為n-type Si(100)在暗室及 照光環境(50W、20000Lx)、300K下,分別以氫 氟酸溶液(A)、氫氟酸溶液添加bM CC01配製而 成(B)及氫氟酸溶液添加cM CC01配製而成(C) 中,進行陽極動態極化掃描之結果,掃描速度為 5mVs⁻¹。

由圖4陽極動態極化掃描的結果顯示:n-type Si (100)放置於C蝕刻液中,不管照光與否,都具有 較高的陽極電流及較大的鈍化電位,顯然試片放置 於此蝕刻液會有較激烈的腐蝕行為發生。

若在氫氟酸蝕刻液中添加dM CC02配製而成D 蝕刻液,或在D蝕刻液中再添加eM CC03配製而成E 蝕刻液,分別在暗室及照光環境下針對n-type Si (100)進行動態陽極極化掃描。實驗結果顯示:試 片在D蝕刻液及E蝕刻液中的腐蝕行為相似。但在試 片背面以50W、20000Lx可見光照射下,D蝕刻液的 蝕刻速率比在暗室中快,其腐蝕電流(I corr)因照 光而提升了6倍左右(圖5所示)。若比較外加陽極 電位下,試片在照光環境中比暗室中其鈍化電流值 增大145倍。

經由動態陽極極化掃描所得結果可知:將試片 置於照光環境下,於C、D及蝕刻液具有較快的腐蝕 速率。

3.2 定電位蝕刻結果

將n-type Si (100) 在照光環境下,分別在各種 不同蝕刻液中進行定電位電化學蝕刻後(V= Eb mV;t=tls),以重量損失法估算多孔矽之孔隙 率。孔隙率之定義為:單位體積矽晶中所佔之孔洞 總體積百分率。矽晶片之孔隙率隨蝕刻之重量損失 增大而提高。所得結果顯示:於A、B及C蝕刻液 中,矽晶片的孔隙率隨著添加CC01濃度的增加而增 加;比較在D蝕刻液和E蝕刻液中,則並不隨添加 CC03而使孔隙度增加,反而降低孔隙率。

圖6為在照光環境下,分別以各種不同蝕刻液, 進行定電位電化學蝕刻後(V= Eb mV;t = tls), 試片經SEM觀測橫切面所求得孔洞平均深度之比 較。圖6顯示:在蝕刻液A中,孔洞深度隨著CC01含 量的增加而增加,而在D及E蝕刻液中,添加CC03 反而得到較淺之孔洞。

綜合動態陽極極化、孔隙率量測及蝕刻深度所 得結果顯示:試片置於照光環境下,於蝕刻液C (C_L曲線)與D蝕刻液(D_L曲線)最具發展潛力並值 得深入探討。

3.3 比較C及D蝕刻液定電位蝕刻出孔洞形 態

在C蝕刻液中由於CC01添加劑與aM氫氟酸之混 合,雖具有較快的蝕刻速率,但觀察孔壁表面形 態,顯示出在所得孔洞之孔壁較為粗糙,如圖7(a) 所示。

但在D蝕刻液中,由於aM 氫氟酸添加CC02添 加劑,在相同條件下,將得一較平滑且均匀的孔洞 內壁如圖7(b)所示。

3.4 化學預蝕刻試片之陽極動態極化掃描

圖8為試片W_{4.6}、W_{4.8}及W_{4.12},分別在300K、照 光亮度50W、20000Lx下,以D蝕刻液,進行動態陽 極極化掃描所得結果。圖8陽極動態極化曲線得知: 化學預蝕刻孔之孔徑固定在4µm時,孔洞間距由4 µm增加至12µm時,陽極極化曲線向右偏移,表示 在相同的電位下孔洞間距增大會得到較大的蝕刻電 流,且在外加電位下砂單晶較不易產生鈍化行為。

圖9為試片W₂₄、W₄₈及W₆₁₂,分別在300K、照 光亮度50W、20000Lx下,以D蝕刻液,進行陽極動 態極化掃描之結果。圖9顯示:在具有相同之(孔洞 直徑/孔洞間距)比 = 1/2時,孔洞尺寸較大之孔洞 其蝕刻速率最快,且外加電位下也最不易產生鈍化 行為。

3.5 化學預蝕刻試片之定電位蝕刻結果

圖10為試片W₄₆、W₄₈及W₄₁₂,在300K、照光亮 度50W、20000Lx鹵素燈照射下,以D蝕刻液,進行 電化學蝕刻後(V = Eb mV;t = t3s),所得孔洞剖 斷面形貌圖。圖10顯示:在相同參數條件下,孔洞 間距的大小會影響到孔洞的形態及蝕刻深度。在較 大的孔距試片上,孔洞的蝕刻深度較深。

圖11為試片W₂₄、W₄₈及W₆₁₂,分別在300K、照 光亮度50W、20000Lx下,以D蝕刻液進行電化學蝕 刻後(V = Eb mV;t = t3s),所得孔洞SEM形貌 圖。圖11顯示:在相同孔洞間距比例下,孔洞的尺 寸大小會影響到孔洞生成形態。孔洞間距越大試片 上,孔洞蝕刻深度越深。

3.6 有無化學預蝕刻孔洞之動態陽極極化曲 線比較

圖12為無電化學預蝕刻之n-type Si (100)(W_{00}) 及 W_{23} 、 W_{24} 、 W_{26} 等試片,分別在300K、照光亮度 50W、20000Lx下,以D蝕刻液進行陽極動態極化掃 描所得結果。圖12顯示:無化學預蝕刻試片(W₀₀) 所量測出陽極動態極化曲線,在D蝕刻液中與其他 有化學預蝕刻的試片的陽極動態極化曲線有所不 同。

根據Lehmann研究指出【6】:在選取蝕刻電 位、電流值時假設臨界電流值會等於預蝕刻孔洞尖 端電流值。

$$J_{cir} = J_{tip} \tag{1}$$

但經由本實驗之陽極極化所得結果顯示:化學 預蝕刻試片表面有氮化矽層披覆時,所量測出陽極 動態極化曲線並不相同於無圖樣、無氮化矽層包覆 之試片的陽極動態極化曲線,故實際上並無法假設 $J_{cr} = J_{w}$ 。

圖13為試片W₀₀、W_{46-n}、W_{48-n}及W_{412-n},在D蝕刻 液中進行動態陽極極化掃描所得結果。圖13顯示: 表面無氮化矽層包覆之化學預蝕刻試片與試片W₀₀的 陽極動態極化曲線相似。

故無圖樣、無氮化矽披覆試片所量測出的陽極 動態極化曲線與化學預蝕刻但無氮化矽層包覆試片 之陽極極化曲線相似,顯然無圖樣之試片可用來代 替經化學預蝕刻、無氮化矽層披覆之試片。

四、討論

4.1 在aM 蝕刻液添加不同含量的CC01所造 成之影響

由圖4實驗結果得知:在A溶液添加大量的CC01 添加劑後可活化試片表面。因此隨CC01濃度增加而 增快蝕刻速率。

由於C蝕刻液中,因含有高濃度的CC01其蝕刻 速率比B、A蝕刻液快。

圖14為比較 W_{4-6-n} 在相同實驗參數(V = EbmV; t = t3s)下,分別以A及C蝕刻液進行電化學蝕刻後,所得剖斷面SEM圖。由圖14可得知:孔洞蝕

刻不均現象隨著添加CC01的含量增加而有改善的情況。

4.2 C及D蝕刻液之蝕刻速率差異原因

圖15為試片 $W_{4.8-n}$ 在相同實驗參數(V = EbmV; t = t3s)下,分別以C及D蝕刻液進行電化學蝕刻後,所得剖斷面SEM圖。

由圖15可得知:D蝕刻液其孔壁側蝕的情況較C 蝕刻液嚴重,且易造成孔洞底部嚴重側蝕而擴孔及 蝕刻不均的現象。

Zhang【12、13】的研究發現,試片於陽極反應時,依下列方程式(2)(3)(4)進行,在方程式(3)中,會產生氫氣泡而吸附於試片表面或孔洞內壁無法排出,將會導致孔洞結構的變形,Lehmann也發現類似的情況。【10】

$$Si + 2F_{ad} + \lambda h^{\oplus} \rightarrow SiF_2 + (2 - \lambda)e$$

$$(\lambda < 2) \tag{2}$$

 $SiF_2 + 2HF \rightarrow SiF_4 + H_2$ (3)

$$SiF_4 + 2HF \rightarrow H_2SiF_6 \tag{4}$$

五、結論

- 陽極動態極化掃描可用來評估n-type Si (100) 蝕刻速率,但無法用來預測所生成的孔洞型 態。
- 在aM氫氟酸溶液添加cM的CC01添加劑將有助於 增快蝕刻速率,但孔壁形貌較粗糙。
- 在aM氫氟酸溶液添加dM的CC02添加劑將有助於 產生蝕刻後所得孔洞結構較為平滑,但在長時 間的蝕刻情況下,將易造成孔洞底部側蝕相當 的嚴重。

六、參考文獻

- 1. "微系統LIGA製程技術",科儀新知第19卷第4期, (1998)
- 2. 劉金耀,第二屆奈米工程暨微系統技術研討會 論文集,pp147-154,(1998)
- 張俊彥譯,"半導體元件物理與製作技術",高 立出版,pp544-562,(2000)
- 張俊彥主編,"積體電路製程及設備技術手冊", 中華民國產業科技發展協進會出版,pp551-532, (1997)
- 5. D.R. Turner, J. Electrochem. Soc., 105, 402, (1958)
- V. Lehmann, and H. Föll, J. Electrochem. Soc., 137, S. 653, (1990)
- 7. V. Lehmann, Mater. Lett., 28, 245, (1996)
- 8. A. Janshoff, K. P. S. Dancil, C. Steinem,
 D. P. Greiner, V. S. Y. Lin, C. Gurtner,
 K. Mosteshariei, M. J. Sailor, and M. R.
 Ghadiri, J. Am. Chem. Soc. 120, 12108, (1998)
- 9. V. Lehmann, IEEE, (1996)
- V. Lehmann, Material Research Society Symposium Proceedings, pp27-32, Vol.283, (1993)
- A . J . Bard, "Electrochemical Methods", pp745-761, (2000)
- R.L. Smith, S. F. Chuang, and S.D. Collins, J. Elrctro. Mater.17, 533 (1988)
- R.L. Smith and S.D. Collins, J. Appl. Phys.71 (8), R1 (1992)
- 14. T . Unagami, J . Electrochem . Soc . 127, 476, (1980)
- X. G. Zhang, S. D. Collins, and R. L.
 Smith, J. Electrochem. Soc., 136, 1561, (1989)
- X. G. Zhang, J. Electrochem. Soc., 138, 3750, (1991)

表1 蝕刻液成分表

Table 1 Etchants used in this study

蝕刻液編號	蝕刻液成分
А	aM 氫氟酸
В	aM 氫氟酸添加 bMCC01
С	aM 氫氟酸添加 cMCC01
D	aM 氫氟酸添加 dMCC02
Е	aM 氫氟酸添加 dMCC02 及 eMCC03

- 圖2 實驗設備圖
- Fig 2 Apparatus for photo-electrochemical study.

圖1(a) 化學預蝕刻試片製備

Fig 1 (a) Pre-etching chemically of the n-type Si(100).

圖1(b) 化學預蝕刻之圖樣尺寸示意圖

Fig 1 (b) Schematic patterns obtained from chemically pre-etched silicon. (x is the edge length of the square; y is the gap between two square patterns.)

圖3 實驗流程圖

Fig 3 A flow chart for photo-electrochemical etching of the n-type Si (100).

- 圖4(a)在暗室、300K下,分別以氫氟酸溶液 (A)、氫氟酸溶液添加bM CC01配製而成 (B)及氫氟酸溶液添加cM CC01配製而成 (C)中,進行陽極動態極化掃描。
- Fig 4 (a) The photo-electrochemical behavior of ntype silicon in (A) aM HF (B) aM HF + bM CC01 (C) aM HF + cM CC01 of 300K in the dark.

- 圖5 為試片1在300K、D蝕刻液中,分別在暗室及 50W、20000流明鹵素燈背面照射環境下, 進行動態陽極及化掃描。
- Fig 5 The photo-electrochemical behavior of n-type silicon in D solution (aM HF + dM CC02) of 300K in the dark and with an illumination of 50W UV-Visible light at 20000Lx.

- 圖4 (b)在300K、50W、20000流明鹵素燈背面照 射試片下,分別以A溶液(A⊥曲線)、B溶 液(B⊥曲線)及C溶液(C⊥曲線)中,進行 陽極動態極化掃描。
- Fig 4 (b) The photo-electrochemical behavior of ntype silicon in (A) aM HF (B) aM HF + bM CC01 (C) aM HF + cM CC01 of 300K with an illumination of 50W UV-Visible light.

- 圖6 為在照光環境下,分別以各種不同蝕刻液, 進行電化學定電位蝕刻後(V= Eb mV;t = t1s),試片經SEM觀測橫切面所求得孔洞 平均深度。
- Fig 6 Etching depth estimated by scanning electron micrographs for a n-type Si (100) in various photoelectrochemical etched etching solution.

- 圖7(a)在aM HF + cM CC01蝕刻液中,以Eb mV 電位值進行定電位蝕刻 t2s後,孔洞之剖面 圖。
- Fig 7 (a) Cross-section of the SEM micrographs for a n-type Si (100) potentiostatically etched at Eb mV in aM HF + cM CC01 solution for t2s.

- 圖8 為試片W₄₆、W₄₈及W₄₁₂,分別在300K、照光 亮度50W、20000Lx下,以D蝕刻液,進行動 態陽極極化掃描所得結果。
- Fig 8 Potentiodynamic polarization curves for samples $W_{4.6} \cdot W_{4.8}$ and $W_{4.12}$ in etching solution D with an illumination of 50W UV-Visible light.

- 圖7 (b)在aM HF + dM CC02蝕刻液中,以Eb mV 電位值進行定電位蝕刻 t2s後,孔洞之剖面 圖。
- Fig 7 (b) Cross-section of the SEM micrographs for a n-type Si (100) potentiostatically etched at Eb mV in aM HF + cM CC02 solution for t2s.

- 圖9 為試片W₂₄、W₄₈及W₆₁₂,分別在300K、照光 亮度50W、20000Lx下,以D蝕刻液,進行 陽極動態極化掃描之結果。
- Fig 9 Potentiodynamic polarization curves for samples $W_{2.4} \cdot W_{4.8}$ and $W_{6.12}$ in etching solution D with an illumination of 50W UV-Visible light.

- 圖10 試片W4-6、W4-8及W4-12,在300K、照光亮度50W、20000Lx鹵素燈照射下,以D蝕刻液,進行電化學蝕刻後(V = Eb mV;t = t3s),所得孔洞剖斷面形貌圖。
- Fig 10 Cross-section of the SEM micrographs for samples W4-6 V4-8 and W4-12 etched potentiostatically at Eb mV in etching solution D with an illumination of 50W UV-Visible light.

- 圖11 試片W₂₄、W₄₈及W₆₋₁₂,分別在300K、照光亮 度50W、20000Lx下,以D蝕刻液進行電化
 學蝕刻後(V=EbmV;t=t3s),所得孔洞 SEM形貌圖。
- Fig 11 Cross-section of the SEM micrographs for samples $W_{2.4} \\ \\ W_{4.8}$ and $W_{6.12}$ etched potentiostatically at Eb mV in etching solution D with an illumination of 50W UV-Visible light.

- 圖12 試片W₀₀、W₂₋₃、W2-4及W₂₋₆,分別在300K、 照光亮度50W、20000Lx下,以D蝕刻液進行 陽極動態極化掃描所得結果。
- Fig 12 Potentiodynamic polarization curves for samples $W_{00} \cdot W_{2.3} \cdot W_{2.4}$ and $W_{2.6}$ in etching solution D with an illumination of 50W UV-Visible light.

- 圖13 試片W₀₀、W_{46n}、W_{48n}及W_{412n},在D蝕刻液中 進行動態陽極極化掃描所得結果。
- Fig 13Potentiodynamic polarization curves for samples $W_{00} \cdot W_{4.6.n} \cdot W_{4.8.n} \not \boxtimes W_{4.12.n}$ in etching solutionD with an illumination of 50W UV-Visiblelight.

A蝕刻液

C蝕刻液

C蝕刻液

- 圖14 試片W_{4-6-n}在相同定電位定時間內(V = Eb 圖15
 mV;t = t3s)下,分別以A及C蝕刻液進行
 電化學蝕刻後,所得孔洞剖斷面形貌圖。
- Fig 14 Cross-section SEM micrographs for the W_{4-6-n} etched potentiostatically at Eb mV for t2s in A and C etching solutions with an illumination of 50W UV-Visible light.
- 圖15 試片W_{4-6-n} 在相同定電位定時間內(V = Eb mV;t=t3s)下,分別以C及D蝕刻液進行電 化學蝕刻後,所得剖斷面SEM圖。
- Fig 15 Cross-section SEM micrographs for the W_{4-6-n} etched potentiostatically at Eb mV for t2s in C and D etching solutions with an illumination of 50W UV-Visible light.