防蝕工程 第十六卷第三期 第175~180頁 民國91年9月 Journal of Chinese Corrosion Engineering, Vol.16 No.3, PP. 175~180 (2002)

# 以溶膠-凝膠程序製備無機複合膜於金屬材料表面之 電化學和表面特性分析

劉偉仁、楊淑梅、鍾財王\*

The Electrochemistry and Surface Analysis of Inorganic Coatings Prepared by Sol-gel Process on the Metal Surface

Wei-Reng Liu\*, Shu-Mei Yang\*, and Tsair-Wang Chung\*

#### 摘 要

為了增加金屬基材之耐腐蝕特性,本實驗以溶膠-凝膠法製備TiO<sub>2</sub>/SiO<sub>2</sub>複合無機被覆膜並 以旋轉塗佈方式被覆於不銹鋼304基材表面。研究中以TGA、DSC、FT-IR、XRD等分析儀 器探討溶膠-凝膠程序之反應情形和不同鍛燒溫度之樣品結晶性分析;在耐腐蝕性能之測試,以 電化學之極化曲線對於不同製備條件之無機複合膜進行測試。研究結果發現當燒結溫度增加, 促使聚縮合反應的進行,在IR圖譜可觀測到Si-OH減少,Si-O-Ti增加的趨勢;在XRD中可得 知被覆膜經高溫燒結後,無機陶瓷粉末結晶性增加,藉此結晶性結構得以保護基材;在本實驗 之操作條件下,被覆膜組成Ti/Si = 1、燒結溫度630°C、燒結時間3h之條件下可製備出耐電化 學腐蝕較佳之無機被覆薄膜,所量測之電流密度為0.00039  $\mu$ A/cm<sup>2</sup>,而未經被覆膜保護之不 銹鋼基材其電流密度為0.023  $\mu$ A/cm<sup>2</sup>。由本實驗結果證實以TiO<sub>2</sub>/SiO<sub>2</sub>當作被覆膜被覆於不銹 鋼304L基材確實對其耐腐蝕特性有所提昇。

關鍵字:溶膠-凝膠法、電化學、腐蝕、極化曲線、被覆、二氧化砂、二氧化鈦

### ABSTRACT

In order to improve the corrosion resistance of metal substrate, the sol-gel process is used to prepare a multi-component inorganic coating of  $\text{TiO}_2\text{-SiO}_2$  on the stainless steel 304L substrate by using spin coating. In the experiment, the reaction mechanism of sol-gel process and the crystallizability of samples prepared at different temperature are analyzed by TGA, DSC, FT-IR, and XRD. In the corrosion test, some parameters, such as the TiO<sub>2</sub> concentration, sintering temperature and sintering time are discussed by polarization method. Under the operating conditions of this study, the better anti-corrosion performance of the films are prepared at Ti/Si = 1, calcinations temperature =  $630^{\circ}$ C and calcinations time = 3h. And the current density of the coated substrate is 0.00039  $\mu$ A/cm<sup>2</sup> better than that of uncoated (0.023  $\mu$ A/cm<sup>2</sup>). Results indicated

<sup>\*</sup> 私立中原大學化學工程研究所

Chemical Engineering Department, Chung-Yuan University, Chung li, Taiwan 320, R.O.C.

that a stainless steel 316L plate coated with TiO<sub>2</sub>-SiO<sub>2</sub> films characterized a better corrosion on stainless steel.

Keywords: Sol-gel process, Electrochemistry, Corrosion, Coating, TiO,, and SiO,

\*To whom correspondence should be addressed.

# 一、前言

利用化學或物理方法將耐腐蝕性有機或無機性 物質塗佈於金屬材料表面使生成一層被覆膜為最普 遍的防蝕法之一。選擇適當的被覆程序不僅會提昇 金屬基材的耐蝕性,特定的被覆膜材更對於基材耐 磨損性、硬度、化學耐久性等金屬材料之物理性質 和化學性質皆有所提昇。

於金屬基材表面被覆保護膜的方式有很多種, 例如: 濺鍍法(Sputtering)、化學氣相沉積法 (Chemical Vapor Deposition)、 蒸 鍍 法 (Evaporation)、噴霧 熱分 解法(Spray pyrolysis)、電漿輔助化學氣相沉積(Plasma Enhanced Chemical Vapor Deposition)等,上述方法 最大缺點在於成膜的均匀度差,尤其是在多成分薄 膜之合成,其膜的均匀性更大大地影響薄膜之性 質,在設備費用上也較為昂貴。而本實驗採用溶膠-凝膠法來製作薄膜。

關於無機被覆膜應用於被覆防蝕之相關研究, 在無機膜之選擇,有SiO<sub>2</sub>[1-6]、TiO<sub>2</sub>[7-8]、ZrO<sub>2</sub>[9-12]、Al<sub>2</sub>O<sub>3</sub>[13-14];在無機複合膜之研究,有TiO<sub>2</sub>-SiO<sub>2</sub>[15-17]、SiO<sub>2</sub>-ZrO<sub>2</sub>[18],而本研究主要針對 TiO<sub>2</sub>-SiO<sub>2</sub>被覆膜之製備過程溶膠-凝膠反應機制以及 電化學耐腐蝕性測試做一探討。

## 二、理論背景

本研究是以溶膠凝膠程序製備TiO<sub>2</sub>-SiO<sub>2</sub>複合被 覆膜,由於整個溶膠凝膠反應過程中,水解和縮合 反應是同時發生的,並非等到完全水解完才行縮合 反應。如前面所述,可利用酸或鹼來催化,在不同 催化條件下所產生的溶凝膠結構也會有所不同。在 酸性環境下會發生水解快而縮合慢的情形,單體會 長成長鏈,以形成低交聯度的網狀結構。但在鹼性 環境下,水解反應慢而縮合反應快,單體會長成支 鏈鍵結,形成較不均匀的高交聯度膠體粒子。本實 驗為了製備低孔隙性TiO<sub>2</sub>-SiO<sub>2</sub>複合被覆膜被覆於不 銹鋼基材上,因此整個溶膠-凝膠反應使用醋酸當作 催化試劑,利用在酸性環境下溶凝膠反應趨向於微 孔結構發展的特性,再以高溫鍛燒製備一具高緻密 性保護膜保護基材。

## 三、實驗流程

首先基材經砂輪機表面處理後,在超音波槽內 以丙酮清洗基材,最後放置於空氣循環箱以60°C烘 乾。在溶液製備方面,被覆溶液主要組成為SiO<sub>2</sub>和 TiO<sub>2</sub>,其先趨物各為Si(OC<sub>2</sub>H<sub>5</sub>)<sub>4</sub>和Ti(OC<sub>2</sub>H<sub>5</sub>)<sub>4</sub>,以 C<sub>2</sub>H<sub>5</sub>OH當作溶劑,CH<sub>3</sub>COOH當作觸媒進行溶膠-凝 膠 反 應 ,首先放入 1.89 g C<sub>2</sub>H<sub>5</sub>OH和 0.5 g CH<sub>3</sub>COOH,經充分攪拌後加入20 g Si(OC<sub>2</sub>H<sub>5</sub>)<sub>4</sub>,待 磁石攪拌10 min後,依所需含浸液Ti/Si比例不同, 加入2.18 g、12.00g 或21.91g Ti(OC<sub>2</sub>H<sub>5</sub>)<sub>4</sub>再經30 min 後,即完成含浸液的配置。

本研究使用旋轉塗佈機(spinning coator)進行 塗佈,其設定參數如下: step1-200 rpm,20 sec, step2-700 rpm,60 sec,以完成塗佈。將已被覆之基 材以升溫速率5℃/min,升至不同溫度進行燒結。

對於被覆膜耐腐蝕性能的測試,本實驗使用電 化學檢出器以開路電位(Open Circuit Potential)和 塔弗曲線(Tafel Curve)等材料特性量測技術探討 被覆膜材抗蝕性。首先秤取3.5g NaCl 加蒸餾水至 1000 cc當作電解液 (electrolyte),經充分攪拌後倒置 電解槽。在工作電極 (Working Electrode) 製作上, 首先以砂紙把鐵片磨光,再以丙酮清洗工作電極上 的鐵片,之後於鐵片上塗導電銀膠,把待測樣品貼 在鐵片上,使用AB膠(環氧樹脂) 1:1混合並塗抹在 樣品周圍,待AB膠乾即可進行電化學測試。

開路電位測試 (Open circuit potential),以量測 間隔1次/sec,量測時間60 min,觀察待測樣品在電 解液中開放循環電流隨時間之變化情形。在塔弗曲 線 (Tafel)測試,由開放循環電流達到穩定電位值 後,由該電位上下各取250 mV,以500 mV/min的速 率掃至高電位,再由高電位掃至低電位再到高電 位,最後以Log i對V作圖,以求得腐蝕速率參數。 實驗結果紀錄不同被覆膜製備條件下之E(i=0)(腐 蝕電位)、Rp(極化電阻)和i<sub>corr</sub>(交換電流密 度)。

## 四、結果與討論

圖1為Ti/Si為0.1、0.55和1所製備被覆膜,將其 粉末以熱重分析儀進行熱重分析。當Ti/Si=0.1,代 表粉末中大部分是SiO<sub>2</sub>成分,其熱重損失率最大, 將近26 wt%;隨Ti的含量增加,可由曲線上讀出 Ti/Si在0.5和1時,熱重損失率分別為18.2和18.3 wt%。由此可發現一個趨勢,隨Ti含量的增加,樣 品熱重損失率會隨之減少。

圖2為Ti/Si為0.1、0.55和1三種不同TiO<sub>2</sub>含量下 之粉末進行DSC分析。由圖上可看出隨著TiO<sub>2</sub>含量 的增加,DSC曲線吸放熱情形傾向於較不顯著的趨 勢,在0.1組成下,樣品加熱到160℃時有一個非常 明顯的吸熱峰,表示在160℃有部分溶劑揮發,推測 應為未反應之乙醇或是吸附在樣品內部表面之水分 子,在之後約280℃左右發現一寬廣的放熱峰,由參 考文獻Izum et al. [11] 得知在此溫度下為Si(OC<sub>2</sub>H<sub>3</sub>)<sub>4</sub> 和Ti(OC<sub>2</sub>H<sub>3</sub>)<sub>4</sub>所含之OC<sub>2</sub>H<sub>5</sub>官能基被熱分解所致,隨 TiO<sub>2</sub>含量增加到0.55和1時,DSC曲線表現則較為一 致,吸熱峰在140℃左右被觀察出來,且其反應之程 度較組成0.1為緩和。儘管不同組成之粉末隨溫度增 加,其吸放熱曲線有些微的不同,但均可在150℃左 右觀察出OC<sub>2</sub>H<sub>5</sub>官能基會在此溫度下被熱分解,進 而生成Si-O-Si、Ti-O-Ti和Si-O-Ti結構,證實聚縮合 反應在此溫度下發生,使粉末結構發生改變。

為了要了解溶膠-凝膠之水解和聚縮合反應隨不 同燒結溫度之反應機制,本研究嘗試以FTIR(紅外 線光譜儀)對於所配置三種不同TiO2含量之溶液進 行IR分析,藉由官能基的消長情形了解整個溶膠-凝 膠反應。

圖3為Ti/Si=0.1、0.55和1三種不同組成溶液, 以紅外線光譜之全反射(ATR)分析樣品表面官能基分 佈情形。可以很清楚地發現隨Ti(OC,H,)。添加量的增 加,Si-OH (960 cm<sup>-1</sup>) 穿透峰越來越不明顯,且其 積分面積也隨之減少,這是由於Ti(OC,H,),的添加, 使得溶液中之乙醇多和TiO,的先驅物行水解反應, 而導致溶液中較多的Si(OC,H,),未和乙醇反應,相對 地其水解產物Si-OH以及縮合反應所產生之Si-O-Si 自然會減少; Ti-O-C (1556 cm<sup>-1</sup>)和Si-O-C (1443 cm<sup>-1</sup>) 為未反應Si(OC,H,) 和Ti(OC,H,) 之官能基;在 786 cm<sup>-1</sup>和1073 cm<sup>-1</sup>分別為對稱形和非對稱形O-Si-O 官能基所在位置,不論是對稱形或是非對稱形O-Si-O, 當Ti(OC,H,),添加量增加,O-Si-O官能基的含量 會隨之減少;大體上來說,三種溶液的光譜圖所呈 現的趨勢都是差不多的,隨著Ti比例的增加部分特 定官能基會有所消長。

由許多研究TiO<sub>2</sub>相關文獻皆可得知,在低溫下 TiO<sub>2</sub>是屬於非結晶相(amorphous)以anatase相存 在,在高溫則慢慢形成結晶相(crystalline),以 rutile形式存在,以XRD圖譜中在2θ=26°左右為 TiO<sub>2</sub> anatase相之特性峰位置,因此本實驗嘗試以 XRD觀察在不同燒結溫度下,三種不同TiO<sub>2</sub>含量組 成下之結晶性探討。

圖4到6為三種不同TiO<sub>2</sub>含量組成之XRD光譜 圖,燒結溫度分別為100、450、630、750、900℃, 可很明顯地由圖中發現,隨著燒結溫度的增加,無 機粉末的結構由非結晶相慢慢轉變成微結晶相,約 在2 $\theta$ = 26°附近可觀察出一個不甚明顯的TiO, anatase相之peak,本實驗於900℃之燒結溫度下, 仍未觀察到膜結構內TiO, rutile相之形成,有相關研 究 [19] 指出藉由溶凝膠製備之純的SiO,、TiO,以及 TiO,-SiO,之XRD 結晶性探討之實驗結果發現,純的 TiO,在600℃燒結環境下已有少許rutile的結晶相形 成,在1200℃下,整個結構幾乎完全轉變成rutile; 而純的SiO,,,無論在600℃或是1200℃燒結環境下 結晶性並不明顯;TiO,-SiO,之XRD結果發現,原本 於600℃燒結條件下會生成之TiO, rutile相,甚至提 高燒結溫度至1200℃仍未觀察到rutile 相之生成。本 實驗之XRD 結果亦與該學者吻合,由此可間接證實 本實驗所製備之TiO,-SiO,藉由溶凝膠反應已充分混 和均匀而形成新的鍵結Ti-O-Si,該結構的形成有助 於抑制 TiO, 在高溫環境下由非結晶結構之 anatase 相 轉變成結晶結構之rutile 相。

在電化學測試結果詳列於表1。溶液組成Ti/Si =0.1時,不同燒結溫度與燒結時間下和電流密度之 相關性,可以很清楚地看出以900℃鍛燒相較於其 他溫度,由於鍛燒溫度太高導致基材本身已受到嚴 重腐蝕,因此電流密度隨鍛燒時間增加而增加;溶 液組成Ti/Si =0.5 時,不同燒結溫度與燒結時間下和 電流密度之相關性,隨著TiO,含量的增加,可由圖 上發現整體抗腐蝕的表現都優於Ti/Si=0.1,同樣 地,以750℃和900℃都因為燒結溫度過高而導致所 量測的電流密度較大,被覆膜無法保護基材免於腐 蝕環境的侵蝕;而500℃和630℃所製備之被覆膜具 有較佳的抗腐蝕特性,且隨著燒結時間的增加與燒 結溫度的提昇,被覆膜的耐蝕性都會隨之遞減;當 Ti/Si的含量繼續提高至1時,被覆膜抗腐蝕的情況將 有所改變。同樣地,以900℃燒結之披覆膜耐蝕性 是最差的;較不同的是以630℃鍛燒溫度下所製備 之被覆膜具有最佳的耐腐蝕特性,不論燒結時間是 1h、3h或是5h。因此由實驗可證實以Ti/Si=1,以 630℃燒結3h所獲得的被覆膜具有最佳的耐蝕性與 穩定性。

## 五、結論

- 由TGA&DSC和FTIR圖譜證實被覆膜於基材表 面進行溶膠-凝膠反應,於TGA&DSC觀察到 weight loss以及放熱反應的發生;IR圖譜觀測到 隨溫度的提昇,Si-O-C、Ti-O-C、Si-OH、-CH 等官能基消失,Si-O-Si和Ti-O-Si官能基的形 成,對於水解反應和縮和反應之進行做一印證。
- 在被覆防蝕方面的研究,鮮少有學者對於被覆膜 結晶程度做一探討,本研究發現鍛燒溫度越高, 被覆膜的結晶程度越明顯。
- 由電化學耐腐蝕性測試實驗證實,TiO<sub>2</sub>的添加確 實有助於被覆膜耐腐蝕性能的提昇;另外較高的 燒結溫度和較長的燒結時間所獲得的被覆膜即使 具有較佳的結晶性和緻密性,但膜表面破碎面的 生成反而會加速腐蝕破壞基材而無法達到保護基 材的目的。
- 4. 藉由電化學測試可發現耐腐蝕性較佳的被覆膜製 備條件為Ti/Si =1,以630℃燒結3小時,所量測 到之電流密度為0.00039 μA/cm<sup>2</sup>,較未被覆之不 銹鋼基材0.023 μA/cm<sup>2</sup> 優越兩個數量級。證實以 TiO<sub>2</sub>/SiO<sub>2</sub>當作被覆膜被覆於不銹鋼SUS 304 基材 確實對其抗腐蝕特性有所提昇。

## 六、參考文獻

- M. Simoes , B.G. A. Odilio, and A. A Luis, Journal of Non-Crystalline Solids, 273 (2000) 159-163.
- O. de Sanctis, L. Gomez , N. Pellegri, and A. Duran , Surface and Coatings Technology, 70 (1995) 251-255.
- 3. D.C.L. Vasconcelos, J.A.N. Carvalho, M. Mantel

and W.L. Vasconcelos, Journal of Non-Crystalline Solids, 273 (2000) 135-139.

- J. de Damborenea, N. Pellegri, O. de Sanctis, and A. Duran, Journal of Sol-Gel Science and Technology, 4 (1995) 239-244.
- P. Gilmar Thim, A.S. Maria Oliveira, D.A. Evandro Oliveira, C.L. Francisco Melo, Journal of Non-Crystalline Solids, 273 (2000) 124-128.
- M. Atik, Lima-Neto Pedro de, L. A. Avaca, and M. A. Aegerter, Ceramics International 21 (1995) 403-406.
- Tomoyoshi Konishi and Shigeo Tsujikawata, Corrosion Engineering, 46 (1997) 863-875.
- J. Pan, C. Leygraf, D.Thierry, and M. A. Ektessabi , Journal of Biomedical Materials Research, 35 (1997) 309-318.
- 9. K. Izumi, N. Minami, and Y. Uchida, Key Engineering Materials, 150 (1998) 77-88.
- M. Atik, and M.A. Aegerter, Journal of Non-Crystalline Solids, 147&148 (1992) 813-819.
- K. Izumi, M. Murakami, T. Deguchi, A. Morita, N. Tohge, and T. Minami, J. Am. Ceram. Soc., 72, 8 (1989) 465-468.
- L. F. Perdomol, P. de Lima-Neto, M.A. Aegerter, and L.A. Avaca, Journal of Sol-Gel Science and Technology, 15 (1999) 87-91.
- A.R. Di Giampaolo Conde, M. Puerta, H. Ruiz and J. Lira Olivares, Journal of Non-Crystalline Solids, 147&148 (1992) 467-473.
- J. Masalaki, J. Gluszek, J. Zabrzeski, K. Nitsch, and P. Gluszek, Thin Solid Films, 349 (1999) 186-190.
- M. Atik, P. De Lima-Neto, M. A. Aegerter, and L. A. Avaca, Journal of Applied Electrochemistry, 125, iss 2 (1995) 142-148.
- M. Atik, and J. Zarzycki, Journal of Materials Science Letters, 13 (1994) 1301-1304.
- 17. O. de Sanctis, L. Gomez, N. Pellegri, C. Parodi, A.

Marajofsky, and A. Duran, Journal of Non-Crystalline Solids, 121 (1990) 338-343.

- W. Boysen, A. Frattini, N. Pellegri, and O. de Sanctis, Surface and Coatings Technology, 122 (1999) 14-17.
- A. Matsuda, Y. Kotani, T. Kogure, Matsumisago, and T. Minami, J. Am. Ceram. Soc., 83 (2000) 229-231.





Fig.1  $\cdot$  Thermogravimetric analyses of TiO<sub>2</sub>-SiO<sub>2</sub> film, Ti/Si = 0.1, 0.55, 1 and 100% TiO<sub>2</sub>.



圖二、不同TiO,組成之DSC分析結果。

Fig.2 > Differential Scanning Calorimeter analyses of  $TiO_2$ -SiO<sub>2</sub> film, Ti/Si = 0.1, 0.55, 1 and 100%  $TiO_2$ .



圖三、不同TiO,組成溶液之FTIR圖譜。

Fig.3  $\cdot$  FTIR spectra of TiO<sub>2</sub>-SiO<sub>2</sub> film at different compositions.



圖四、 Ti/Si=0.1之XRD圖譜。

Fig.4 \ XRD patterns of Ti/Si = 0.1 at different sintering temperature (a) 100 °C, (b) 450 °C, (c) 630 °C and (d) 750 °C.



圖五、 Ti/Si=0.55之XRD圖譜。

Fig.5 \ XRD patterns of Ti/Si = 0.1 at different sintering temperature (a) 100 °C, (b) 450 °C, (c) 630 °C and (d) 750 °C.



圖六、 Ti/Si=1之XRD圖譜。

Fig.6 \ XRD patterns of Ti/Si = 0.1 at different sintering temperature (a) 100 °C, (b) 450 °C, (c) 630 °C and (d) 750 °C.

- 表一、 不同組成和燒結條件下之電化學量測結 果。
- Table 1 The current density for different preparing conditions

| Solution<br>TV <u>Si</u> | Temperature<br>"C | Current density (102 µA / cm2) |       |        |
|--------------------------|-------------------|--------------------------------|-------|--------|
|                          |                   | 1                              | 3     | 5      |
| 0.1                      | 500               | 5.19                           | 4.682 | 4.29   |
| 0.1                      | 630               | 6.36                           | 3.34  | 6.11   |
| 0.1                      | 750               | 5.47                           | 7.52  | 8.95   |
| 0.1                      | 900               | 7.9                            | 219.5 | 448.04 |
| 0.55                     | 500               | 0.09                           | 0.92  | 4.03   |
| 0.55                     | 630               | 2.69                           | 3.5   | 5.6    |
| 0.55                     | 750               | 4.78                           | 5.23  | 7.86   |
| 0.55                     | 900               | 4.87                           | 6.61  | 0.67   |
| 1                        | 500               | 4.59                           | 3.68  | 1.22   |
| 1                        | 630               | 0.19                           | 0.039 | 0.04   |
| 1                        | 750               | 5.5                            | 3.26  | 5.44   |
| 1                        | 500               | 3.42                           | 4.79  | 9.8    |