防蝕工程 第十六卷第二期 第65~74頁 民國91年6月 Journal of Chinese Corrosion Engineering, Vol.16 No.2, PP. 65~74 (2002)

化學成份對牙科用Ni-Cr-Mo合金耐蝕性質之影響

林茂欽、黃何雄

Compositional Influence on the Corrosion Resistance of Ni-Cr-Mo Dental Alloys

Mau-Chin Lin and Her-Hsiung Huang

摘要

本研究的目的是探討化學成份對牙科用Ni-Cr-Mo鑄造合金耐蝕性質的影響。利用循環動電 位測試(cyclic potentiodynamic test)和定電位測試(potentiostatic test)評估不同Ni-Cr-Mo合金 在除氧人工唾液(pH 5/37°C)中的耐蝕性質。循環動電位測試後,利用光學顯微鏡觀察試片表 面腐蝕型態。定電位測試後,利用X光光電子能譜及歐傑電子能譜分析試片表面鈍化膜的化學 成份及結構。耐蝕性質測試結果顯示:Ni-Cr-Mo合金的耐蝕性質與表面生成的鈍化膜(包括 Ni(OH)₂、NiO、Cr₂O₃及MoO₃)有關。含較高Cr(約21%)及Mo(約8%)含量的Ni-Cr-Mo合 金,因表面鈍化膜含有高Cr(最大值約31-35%)及高Mo(最大值約12%),故其極化曲線中有 較寬廣的鈍化範圍,並對孔蝕免疫。添加少量的鈦(<4%)對Ni-Cr-Mo合金的耐蝕性質並無影 響。當抗孔蝕當量(pitting resistance equivalent)達到49時,Ni-Cr-Mo合金便有良好抗孔蝕能 力。

關鍵詞:成份,腐蝕,鈍化膜,孔蝕,Ni-Cr-Mo合金。

ABSTRACT

The objective of this investigation was to study the compositional influence on the corrosion behavior of Ni-Cr-Mo dental casting alloys in acidic artificial saliva. Cyclic potentiodynamic and potentiostatic tests were used to evaluate the corrosion behavior of different Ni-Cr-Mo dental casting alloys in deaerated artificial saliva with pH 5 at 37 °C. Optical microscope observations were carried out after the cyclic potentiodynamic tests. Surface chemical analyses were

* 中山醫學大學牙科材料研究所

Institute of Dental Materials, Chung Shan Medical University

characterized by X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) after potentiostatic tests. The results of corrosion tests showed that the corrosion resistance of Ni-Cr-Mo casting alloys was associated with the formation of passive film, containing Ni(OH)₂, NiO, Cr₂O₃ and MoO₃, on the surface. The Ni-Cr-Mo alloy with higher Cr (≈ 21 %) and Mo (≈ 8 %) contents had much larger passive region in the polarization curve and was immune to pitting corrosion, which was due to the presence of high Cr (maximum $\approx 31-35$ %) and Mo (maximum ≈ 12 %) contents in the surface passive film. The presence of Ti lower than 4 % in the Ni-Cr-Mo casting alloy had no effect on the corrosion resistance. A pitting resistance equivalent (PRE) of about 49 could provide the Ni-Cr-Mo alloy with a good pitting corrosion resistance.

Key words: composition, corrosion, passive film, pitting, Ni-Cr-Mo alloy.

一、前言

Ni-Cr-Mo 合金因具有優良的機械性質(如硬度 高、密度低、抗張力強、良好的彈性係數等)、低廉 的價格及製作容易,因此早已被廣泛應用於牙科固 定贋復物(fixed prosthodotic appliance)。Ni-Cr-Mo 合金通常被應用在固定贋復體陶瓷鑲面的背架 (backing)或是金屬牙冠牙橋(crown and bridge), 因此牙科用Ni-Cr-Mo 合金在口腔內的耐蝕性質便是 值得重視。

因為口腔的環境是容易誘發材料發生腐蝕,所 以口腔中腐蝕的過程是持續不斷的在進行,而金屬 離子的釋放則是腐蝕過程的結果。牙科材料在口腔 中發生腐蝕的結果對生物體便可能會產生不利的影 響。雖然Ni-Cr-Mo合金中的金屬離子濃度超過某一 臨界值時可能會引起組織過敏或發炎,然而這些合 金目前仍然是普遍被使用的牙科材料之一。曾有研 究指出,Ni-Cr-Mo合金腐蝕的產物並不會影響細胞 的形態(morphology)或生存能力(viability),但 會減低細胞的增生能力(proliferation)⁽¹⁾;牙科用 Ni-Cr-Mo鑄造合金的金屬離子釋放也會影響細胞的 新陳代謝能力(energy metabolism)⁽²⁾。因此,從生 物相容性的觀點而言,牙科用Ni-Cr-Mo合金是否擁 有良好的耐蝕能力是值得重視的。

化學成份的差異是影響合金耐蝕性質的一個主

要因素,許多關於化學成份對Ni-Cr-Mo合金耐蝕性 質影響的研究已被提出⁽³⁻⁸⁾。含不同化學成份的Ni-Cr-Mo合金在0.1M乳酸和0.1M氯化鈉溶液中一星期 的平均腐蝕速率有不同的範圍:0.54~3.22mg/cm² ⁽⁶⁾。合金中含有Fe和Cu在酸性溶液中較容易腐蝕, 相反地,合金添加Cr、Ni和Mo可提高耐蝕性⁷⁾。Gil 等人⁽⁸⁾發現Ni-24Cr-10Mo-2Be合金在人工唾液中顯 示嚴重的腐蝕且有大量的離子釋放。上述的文獻即 表示牙科用Ni-Cr-Mo合金的耐蝕能力是與化學成份 的不同有密切關係。

綜合上述文獻資料,有關化學成份對牙科用Ni-Cr-Mo合金耐蝕性質的影響仍然有待更進一步研究,因此本研究將探討化學成份對牙科用Ni-Cr-Mo 鑄造合金耐蝕性質的影響,並利用各種表面分析技 術探討Ni-Cr-Mo合金的耐蝕機構。

二、材料與方法

(1) 實驗材料

本實驗使用六種市售牙科臨床常用之Ni-Cr-Mo 合金。合金中所含化學成份利用輝光放電分光儀 (glow discharge spectrometer, GDS)分析,結果如表 1 所示。六種 Ni-Cr-Mo 合金經氫氣鑄造機 (Argoncaster-C, Shofu, Japan)鑄造後,利用光學顯 微鏡觀察金屬材料之金相微觀組織,然後再探討各種合金的耐蝕性質。

(2) 試片備製

將厚度0.8mm 活動牙架用緩壓蠟片(sheet wax, Dentaurum, Germany), 裁成60 片長10mm、寬 10mm 的規格,以做為金屬試片鑄造之原型(每種 金屬各鑄造十片)。

將蠟型以鑄道蠟固定與鑄道成型器(sprue former)上,選擇合適之鑄造環(casting ring)加上 潤濕的石棉襯墊(ring liner, Jelenko, USA),包埋材 依廠商指示之粉水比(100g/25cc)混合,用真空攪 拌機(vacuum mixer, Jelenko, USA)調伴90秒後灌 注。將包埋好之鑄造環置於室溫一小時,待其完全 固化後準備進爐去臘。將鑄造環置入脫蠟爐 (Programix 50, Ugin, France)加熱至900℃脫蠟,然 後進行鑄造。鑄造時使用氫氣鑄造機依廠商指示進 行鑄造,在真空環境下,加入氫氣並利用電弧熔化 金屬後,利用氫氣加壓作用與真空產生的壓力差, 將熔融的金屬吸引入模具,進行鑄造。鑄造後將鑄 造環置放於室溫下待其卻冷,用石膏剪(plaster nipper)去除大部份的包埋材,剩餘包埋材用125 μ m氧化鋁(alumina, Al₂O₃)將之去除。

用碳化砂切盤 (silicon carbide disk)將樣本切 下,依序用碳化矽水砂紙#120、#240、#400、 #800、#1200 及#1500 依序研磨,最後用 1 μm 氧化 鋁粉研磨抛光,抛光後之試片用蒸餾水及酒精清 洗,吹風機冷風吹乾。將所有Ni-Cr-Mo 鑄造試片以 10 mL HF+100 mL HNO₃ 溶液浸蝕60 秒,利用光學 顯微鏡觀察金相組織,結果均顯示樹枝狀結構 (dendrite structure)及層狀共晶 (eutectic)組織。 腐蝕試驗的試片是將抛光後之金屬片背面連接銅導 線,然後利用環氧樹脂將金屬片背面及四周塗裝絕 緣,即完成腐蝕試驗用之試片 (曝露之金屬面積為 1cm²)。

(3) 耐蝕性質評估

(a) 循環動電位測試

本研究的腐蝕試驗電解液是採用人工唾液(見表2)。試驗前先用高純度氦氣通入電解液中除氧一小時,電解液的pH值為5,且保持在37℃。分別使用飽和甘汞電極(saturated calomel electrode, SCE)和白金薄片當作參考電極(reference electrode)和相對電極(counter electrode)。將試片浸入電解液待穩定二小時後開始進行循環動電位量測。以1mV/s速率從-700mV向陽極方向掃瞄,當陽極電流密度達到1mA/cm²時,所外加的陽極電位開始反向掃瞄直到與鈍化區相交。循環動電位極化曲線的量測使用AUTOLAB PGSTAT 30 (Eco Chemie BV, Utrecht, The Netherlands)電位儀。每個腐蝕測試條件使用五個試片(n=5)。

(b) 定電位測試

為了瞭解 Ni-Cr-Mo 合金表面鈍化膜的特性,將 所有試片保持在-0.125V (SCE)的陽極鈍化電位下2 小時,然後取出試片進行表面鈍化膜性質分析。

(c) 表面觀察及化學分析

循環動電位測試後,利用光學顯微鏡觀察 Ni-Cr-Mo 合金的表面腐蝕型態。定電位測試後,將試 片從電解液中取出,利用去離子水沖洗,再以氦氣 吹乾,然後用 XPS (ESCA 210, Kevex Instrument Inc., USA) 和 AES (Microlab 310D, Kevex Instrument Inc., USA)分析 Ni-Cr-Mo 合金表面鈍化 膜的結構及化學成份。

三、結果

圖1為六種Ni-Cr-Mo合金在酸性人工唾液中的 循環動電位極化曲線。所有Ni-Cr-Mo合金均顯示活 性到鈍態(active to passive)的轉變行為。BB和 W99試片均顯示較寬廣的鈍化區範圍,約其他試片 的二倍。除了BB和W99試片外,其他Ni-Cr-Mo合 金在極化曲線中均顯示出一個大的磁滯環 (hysteresis loop) •

圖2為從圖1所求得的各項耐蝕性質參數:(a) 腐蝕電位,E_{cor};(b)孔蝕電位,E_{pi};(c)保護電位, E_{prot};(d)孔蝕電位和保護電位之電位差;E_{pi}-E_{prot}; (e)鈍化區範圍(passive range);(f)鈍化電流密 度,I_{pass}。

圖 3 為六種 Ni-Cr-Mo 合金經循環動電位試驗後 表面利用光學顯微鏡觀察結果。圖 3 顯示大部份的 Ni-Cr-Mo 合金(除了 BB 和 W99 試片)皆有孔蝕的 發生。

圖4為Ni-Cr-Mo合金((a)BB,(b)TIT,(c) NiTi8試片)經定電位測試(-0.125V/2小時)後表面 XPS分析結果。結果顯示:BB、TIT及NiTi8試片 表面均可發現Ni(OH)₂、NiO、Cr₂O₃及MoO₃的存 在。W99、VB及TA試片經XPS分析也有相同的結 果。圖4(c)也顯示NiTi8試片表面除了上述所提到的 氧化物和氫氧化物之外,還發現有TiO₂的存在。

圖 5 為 Ni-Cr-Mo 合金((a) BB,(b) TIT,(c) NiTi8試片)經定電位測試(-0.125V/2小時)後表 面AES 縱深分析結果。結果顯示:BB 試片的表面鈍 化膜內含有高Cr(接近35%)和高Mo(接近12%) 含量(圖5(a)),W99試片也有相似的結果(Cr接近 31%;Mo接近12%)。另一方面,TIT(Mo<10%) 和NiTi8(Mo<6%)兩種試片則顯示表面鈍化層含 有較低的Cr(<20%)(圖5(b)和(c))。VB(Cr<9%; Mo<5%)和TA(Cr<18%;Mo<9%)試片也有相似的 結果。此外,在NiTi8試片表面的鈍化膜內也有偵 測出Ti(<6%)的存在(圖5(c))。

本研究利用抗孔蝕當量 (pitting resistance equivalent, PRE=Cr%+3.3×Mo%來評估Ni-Cr-Mo 合 金孔蝕抵抗能力,結果如下:BB=48.89;W99 =49.03;VB、NiTi8、TA及TIT=26.60~40.21。

四、討論

從圖 1 可看出所有Ni-Cr-Mo 合金在酸性人工唾

液中的極化曲線均顯示從活性到鈍態(active to passive)的轉變行為。有研究指出⁽⁹⁾:含Cr的Ni基合金在酸性溶液中經陽極極化後表面可以變得更鈍性。另一方面,也有研究指出Ni-Cr-Mo合金中不僅所含的Cr和Mo元素對耐蝕性有重大影響,其表面氧化層的成份也對耐蝕性扮演重要角色⁽¹⁰⁾。在本研究中,所使用的Ni-Cr-Mo合金表面鈍化膜的結構包括Ni(OH)₂、NiO、Cr₂O₃和MoO₃(如圖4所示)。

由圖2(e)可知,BB和W99試片有一相當大的陽極鈍化範圍(約1.2V),大約是其它四種Ni-Cr-Mo合金的二倍大。Roach等人⁽¹¹⁾曾提出Ni-Cr-Mo合金至少必需含16-22%的Cr和9-14%的Mo,才可以形成一穩定的鈍態氧化層,以提供良好的耐蝕性質。Cr₂O₃/Cr(OH)₃的鈍化膜比NiO/Ni(OH)₂的鈍化膜之耐蝕性強10倍¹²⁾。若Ni-Cr-Mo合金含低Cr和Mo時,則會有較高的腐蝕速率¹³⁾。在本研究中,BB和W99的試片較其它四種Ni-Cr-Mo合金呈現較大的鈍化範圍,這主要歸因於試片表面所生成的鈍化膜含有較高的Cr及Mo(圖5(a))。

另外,BB和W99試片在極化曲線中並無明顯 的磁滯環(圖1),這表示BB和W99這兩種Ni-Cr-Mo 合金有良好的抗孔蝕能力,從圖 3(b) 和(c)亦可 看出。另外四種Ni-Cr-Mo 合金則顯示出大的磁滯 環,以致於容易發生孔蝕(圖3(a)、(d)、(e)、(f))。 因為BB和W99試片含有較高的Cr(約21%)和Mo (約8%),以致於表面鈍化膜也含有較高的Cr(約 31~35%)和Mo(大約12%)(圖5(a)),進而導致 對孔蝕免疫。有關BB 和W99 試片表面鈍化膜中 Cr/Mo含量(31~35/≈12%)較底材合金含量(≈ 21/≈8%) 為高的現象,可能是與鈍化膜中Cr,O,及 MoO,為主要的成份有關。另一方面,TIT、NiTi8、 VB和TA試片表面的鈍化膜含較低的Cr (<20%)和 不同含量的Mo (5-10%) (圖 5(b)及(c)),因此鈍化 膜較易被破壞,故無法提供良好的抗孔蝕能力。另 外,TIT 試片雖然含有約8%的Mo,但Cr 含量只有 14% 左右,所以仍然會發生孔蝕。換言之, Ni-CrMo 合金中Cr 含量只有 14%時,對孔蝕抵抗能力並 無明顯改善,即使有高 Mo (8%)含量的存在。此 外,含有約4% Ti 的NiTi8 試片,雖然表面鈍化膜有 TiO₂的存在(圖4(c)),同時鈍化膜內也偵測到 Ti (<6%)的存在(圖5 (c)),但仍然會發生孔蝕(圖 3(d)。

圖1中TIT、NiTi8、VB和TA試片顯示回掃的陽 極極化曲線沿著活性路徑行進,並形成一大的磁滯 環,此回掃的極化曲線與鈍化區的交點定義為保護 電位(protection potential, E_{prot})。當電位低於E_{prot} 時,材料表面的孔洞不會再繼續發展下去;當電位 高於E_{pit}時,新的孔洞才會開始發展;在E_{prot}和E_{pit}之 間,新的孔洞並不會產生,但舊的孔洞則會繼續成 長。口腔中金屬贋復物與牙齦或周圍牙齒間的縫 隊,便可視為已預先存在的孔洞。因此,E_{pit}與E_{prot} 的差值可用來評估材料抗縫隙腐蝕的指標¹⁴⁾。本研 究中,Ni-Cr-Mo合金孔蝕或間隙腐蝕敏感度之順序 如下:TA>TIT>NiTi8>VB>>BB和W99(BB和 W99試片沒有孔蝕電位)。

Khamis和 Seddik⁽¹⁵⁾發現Ni-Cr鑄造合金對孔蝕 顯示高的敏感度。另一方面,Metwally等人⁽¹⁶⁾研究 指出,Ni-Cr合金在除氣環境下有良好的抗蝕能力。 另外,也有研究指出Ni-Cr合金在體內或體外試驗皆 有良好的抗蝕能力⁽¹⁷⁾。在本研究中,圖2(b)~(d)所示 Ni-Cr-Mo合金的腐蝕參數顯示,從抗孔蝕能力而 言,含較高Cr(約21%)和Mo(約8%)的Ni-Cr-Mo合金 (也就是BB和W99試片),是牙科用Ni-Cr-Mo合金較 佳的選擇。另外,由圖2可知,Ni-Cr-Mo合金的E_{cor} 值都在-0.57和-0.65V(SCE)之間(圖2(a));I_{pass}值 約在1.1~6.2 μ A/cm²之間(圖2(f))。

已有許多研究指出,以Ni基為主的牙科用合金 中,Cr和Mo的成份在抗腐蝕方面扮演著重要角色 ^(10,12,13)。然而,至目前為止,文獻上並沒有適當的定 量表示方法可被用來描述Cr和Mo成份對抗腐蝕方面 的影響。就Fe-Ni-Cr-Mo不銹鋼而言,通常可使用抗 孔蝕當量(pitting resistance equivalent, PRE)來評 估Cr和Mo成份在抗孔蝕或間隙腐蝕的效能(PRE=Cr%+3.3×Mo%)⁽¹⁸⁾。就牙科用Ni-Cr-Mo合金而言(環境 pH:4~7),PRE最少需要超過43才能避免孔蝕的發生⁽⁵⁾。本研究中,根據上述的PRE公式可得:對孔蝕免疫的BB和W99試片之PRE值分別為48.89和49.03,其他四種Ni-Cr-Mo合金之PRE值則在26.60~40.21之間。此結果表示當Ni-Cr-Mo合金之PRE值達到49時,孔蝕便不會發生。

五、結論

- (2) 含較高Cr (≈21%)及Mo (≈8%)成份的Ni-Cr-Mo合金有較佳的耐蝕性質:對孔蝕免疫及更寬 廣的鈍態範圍。
- (3) 添加少量的Ti(<4%)對於Ni-Cr-Mo合金抗孔蝕 能力並無提升作用,即使在合金表面可偵測到 少量的TiO,存在。
- (4) Ni-Cr-Mo合金的抗孔蝕當量(PRE)值達到49 左右時,即能抵抗孔蝕的發生。

六、誌謝

本研究感謝國科會經費支持(NSC 89-2815-C-040-019R-B)。

七、參考文獻

- Bumgardner JD, Lucas LC. Cellular response to metallic ions released from nickel-chromium dental alloys. J Dent Res, 74 (1995) 1521-7.
- 2. Bumgardner JD, Doeller J, Lucas LC. Effect of nickel-based dental casting alloys on fibroblast

metabolism and ultrastructural organization. J Biomed Mater Res, 29 (1995) 611-7.

- Goff AHL, Joiret S, Abourazzouk D, Raman investigation of crevice corrosion in nickelchromium dental alloys containing Beryllium. Electrochim Acta, 43 (1998) 53-62.
- Geis-Gerstorfer J, Passler K. Studies on the influence of Be content on the corrosion behavior and mechanical properties of Ni-25Cr-10Mo alloys. Dent Mater, 9 (1993) 177-81.
- Geis-Gerstorfer J, Greener EH. Effect of Mo content and pH value on the corrosion behavior of Ni-20Cr-Mo dental alloys. Dtsch Zahnärztl Z, 44(1989) 863-6.
- Geis-Gerstorfer J, Sauer KH, Passler K. Ion release from Ni-Cr-Mo and Co-Cr-Mo casting alloys. Int J Prosthodont, 4 (1991) 152-8.
- Kedici SP, Aksut AA, Kilicarslan MA, Bayramoglu G, Gokdemir K. Corrosion behaviour of dental metals and alloys in different media. J Oral Rehabil, 25 (1998) 800-8.
- Gil FJ. Sanchez LA, Espias A, Planell JA. In vitro corrosion behaviour and metallic ion release of different prosthodontic alloys. Int Dent J, 49 (1999) 361-7.
- Kawashima A, Asami K, Hashimoto K, XPS study of anodic behavior of amorphous nickelphosphorus alloys containing chromium, molybdenum or tungsten in 1 M HCl. Corros Sci, 24 (1984) 807-23.
- Bumgardner JD, Lucas LC. Surface analysis of nickel-chromium dental alloys. Dent Mater, 9 (1993) 252-9.
- Roach M, Parsell D, Gardner S, Bumgardner JD, Correlation of corrosion and surface analyses for Ni-Cr alloys. Crit Rev Biomed Eng, 26 (1998) 391-2.

- Marcus P, Grimal JM. The anodic dissolution and passivation of Ni-Cr-Fe alloys studies by ESCA. Corros Sci, 33 (1992) 805-14.
- Bumgardner JD, Roach M, Scheel T, Gardner S. Corrosion and XPS surface evaluation of nickelchromium based dental casting alloys. South Biomed Eng Conf Proc, IEEE, Piscataway, NJ, USA, (1998) 45.
- Wilde BE. A critical appraisal of some popular laboratory electrochemical tests for predicting the localized corrosion resistance of stainless alloys in sea water. Corrosion, 28 (1972) 283-91.
- Khamis E, Seddik M. Corrosion evaluation of recasting non-precious dental alloys. Int Dent J, 45 (1995) 209-17.
- Metwally WA, Habib AN, Katamish HA. Corrosion and metallurgical study of some porcelain fused to metal alloys. Egypt Dent J, 41 (1995) 1159-66.
- Benatti OFM, Miranda WG Jr, Muench A. In vitro and in vivo corrosion evaluation of nickelchromium and copper-aluminum-based alloys. J Prosthet Dent, 84 (2000) 360-3.
- Glover TJ. Recent developments in corrosionresistant metallic alloys for construction of seawater pumps. Mater Performance, 27 (1988) 51-6.

表 1 牙科用Ni-Cr-Mo鑄造合金化學成份

Table 1 Chemical compositions of Ni-Cr- Mo dental

|--|

	Cr	Mo	Ti	Al	Cu	Si	Fe	Mn	Be	Co	Nb	Ni
VB*	12.4	4.9		2.9					1.6	0.4		Bal
BB	21.10	8.42	0.10	0.07			1.00				3.52	Bal
W99	21.71	8.28		0.01		0.85		0.33			0.83	Bal
NiTi8	13.68	3.80	3.63	1.88	3.1	0.85		1.02		0.44		Bal
TA	12.96	5.23	0.26	2.17						0.14		Bal
TIT	13.65	8.05	0.25	2.43						0.11		Bal

note:*: according to the data provided by manufacturer.

VB: Verabond, Aalba Dent Inc., USA

BB: Berabond, Bego, Germany

W99: Wiron 99, Bego, Germany

NiTi8: NiTi-8, Giliga Co Ltd., USA

TA: Talladium-P, Talladium Inc., USA

TIT: Titani, Jeneric/Pentron Inc., USA

- 圖 1 Ni-Cr-Mo合金在人工唾液中循環動電位動 極化曲線圖
- Fig. 1 Cyclic potentiodynamic polarization curves of Ni-Cr-Mo alloys in artificial saliva.

表 2 人工唾液成份

Table 2 Compositions of artificial saliva used in this study.

Composition	mg/L
NaCl	400
KCl	400
$CaCl_2 \cdot 2H_2O$	795
NaHPO4 · H_2O	690
KSCN	300
$Na_2S \cdot 9H_2O$	5
Urea	1000
* pH is 5	

圖 2 耐蝕性質參數

Fig. 2 Corrosion resistance parameters.

(a) VB

(d) NiTi8

(b) BB

(e) TIT

圖 3 Ni-Cr-Mo合金經循環動電位極化試驗後的 金相觀察

Fig. 3 Optical micrographs of Ni-Cr-Mo alloys after cyclic potentiodynamic polarization tests.

- 圖 4 Ni-Cr-Mo合金經定電位試驗(-0.125 V (SCE)/2小時)後表面XPS分析結果
- Fig. 4 XPS analyses of Ni-Cr-Mo alloys after potentiostatic tests at 0.125 V (SCE) for 2 h.
- 圖 5 Ni-Cr-Mo合金經定電位試驗(-0.125 V (SCE)/2小時)後表面AES縱深分析結果
- Fig. 5 AES depth profiles analyses of Ni-Cr-Mo alloys after potentiostatic tests at - 0.125 V (SCE) for 2 h.

防蝕工程 第十六卷第二期 民國 91 年6 月