高溫水環境 pH 監測技術

劉文燦* ・李淑幸* 著

The pH Monitoring Technique in High Temperature Aqueous Environment

W. T. Liu* & S. S. Lee*

摘要

由於 8% Y₂O₃-ZrO₂(YSZ) 具有導氧之性質，以 Cu/CuO 粉末做為參考點，利用外接式高溫參考電極量測外部水質 pH 改變。在實驗室高溫高壓系統中，利用 YSZ 和 Pt 電極量測九種溶液在 250°C, 275°C 和 300°C 下之 pH 值，並與理論 MULTeq 軟體計算之 pH 值做比較。結果顯示 YSZ 電極對大部分的溶液可提供可靠之 pH 量測，且 YSZ 和 Pt 所量測之電位比較，呈現線性關係，意即 YSZ 電極之反應符合可逆之 Nernstian 關係。

ABSTRACT

The high temperature pH monitor is set up by filling the 8% Y₂O₃-ZrO₂(YSZ) tube with the Cu/CuO powder which acts as a reference point. Due to the oxygen conducting property of YSZ in high temperature environment, the pH value can be obtained by measuring the potential difference across the YSZ wall. In laboratory testing system, the pH values of 9 different solutions have been measured at temperature of 250°C, 275°C and 300°C by using YSZ and Pt electrodes. The results have also been compared with the theoretical values calculated by MULTeq program. It shows the YSZ electrode can offer reliable pH measurement in high temperature aqueous environment.

一、前言

高溫高壓水環境材質常發生腐蝕問題，尤其在核電廠壓力容器更是重要，腐蝕型態一般以沿晶應力腐蝕破裂（IGSCC）和間隙腐蝕（Crevice Corrosion）為主。因此針對高溫高壓水環境，發展可靠之腐蝕監測技術有其必要性，因為直接與安全和經濟效益有重要的關係。電化學腐

*工業技術研究院工業材料研究所
MRL, ITRI Hsinchu, Taiwan, R.O.C.
電極當做高溫參考電極，以提供 Ag/AgCl 以外之另一種選擇。有鑑於對高溫高壓水環境腐蝕之重視，工材所進行高溫參考電極和高溫 pH 電極之製作。本文將就高溫 pH 電極原理、組裝和測試結果做一簡單說明。

二、電極原理與組裝

原理：

<table>
<thead>
<tr>
<th>參考點</th>
<th>氧固態電解質</th>
<th>溶液</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu/Cu₂O</td>
<td>8% Y₂O₃・ZrO₂</td>
<td>V₀+Cu₂O+2e⁻ = O₂+ZCu O₂+2H⁺ = V₀+H₂O</td>
</tr>
<tr>
<td>φr</td>
<td>φ₁</td>
<td>φ₂</td>
</tr>
<tr>
<td>全反應</td>
<td>Cu₂O+2H⁺+2e⁻ = 2Cu+H₂O</td>
<td></td>
</tr>
</tbody>
</table>

利用已知之氧的固態電解質 8% Y₂O₃・ZrO₂（簡稱 YSZ）導氧之特性，以 Cu/Cu₂O 作

為內部之參考點、量測外部因 pH 改變，而改變

YSZ 外部炭缺陷濃度之性質，可得水質 pH 之

變化。如上圖所示，在定溫下二界面均達到平

衡，如果 YSZ 導氧夠快，則 φ₁ = φ₂，所以電極

內外電位差 φ₁-φ₂ 即為外界 pH 改變所顯示之電

位差。此電位須利用 Ag/AgCl 高溫參考電極量

測。因此所得之電位：

\[E_{zo} = E^{°}_{cuxo} \times \frac{2.303RT}{2F} \log aZ \]

其中 E^{°}_{cuxo} 為 2Cu+H₂O→Cu₂O+2H⁺+2e⁻ 之

標準電位，由此反應式之 \(\Delta G^{°}/2F \) 求得。

所以 pH = \((E_{zo} - E^{°}_{cuxo}) \times \frac{F}{2.303RT} \)

組裝：

高溫 pH 電極如圖 1 所示，在 YSZ 管內置

入 Cu/Cu₂O 粉末，以一定錫銅執棒或銅棒將訊

號引出，利用鐵弗龍材質做為防蝕之填充材料

將 YSZ 管固定在金屬 Swagelock 上。

三、實驗

利用 YSZ 電極和鉑黴化之白金電極實際量

測溶液之 pH 值，並利用 EPRI 發展之理

論 MULTEQ 軟體計算高溫下特定組成溶液

下 pH 值作為比較。所選擇之溶液如下九種：

- 0.01M NaHSO₄
- 0.01M H₂PO₄
- 0.01M B(OH)₃
- 0.01M H₂PO₄+0.14M NaOH
- 0.01M B(OH)₃+0.0001M KOH
- 1.0M Na₂SO₄
- 0.01M B(OH)₃+0.01M KOH
- 0.01M B(OH)₃+0.01M KOH
- 0.01M KOH

在實驗室建立高溫、高壓模擬系統如圖 2，

利用外載式 Ag/AgCl 高溫參考電極如圖 3 量測

YSZ 電極和 Pt 電極之電位。
四、結果與討論

(a)所量測之九種溶液在250℃、275℃和300℃之pH如表1所示，和理論MULTEQ pH值比較，除了0.01M(B(OH)₉)+0.0001M KOH和0.02M B(OH)₉的誤差偏大，其餘誤差在0.8以内，如圖4，造成誤差原因尚未瞭解。

表1 高温pH電極量測結果

<table>
<thead>
<tr>
<th>T°C</th>
<th>0.1M NaHSO₃</th>
<th>0.01M H₃PO₄</th>
<th>*0.02M B(OH)₉</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>YSZ</td>
<td>NULTEQ</td>
<td>YSZ</td>
</tr>
<tr>
<td>250</td>
<td>3.22</td>
<td>3.3</td>
<td>2.95</td>
</tr>
<tr>
<td>275</td>
<td>3.55</td>
<td>3.7</td>
<td>2.91</td>
</tr>
<tr>
<td>300</td>
<td>3.73</td>
<td>4.1</td>
<td>3.01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T°C</th>
<th>0.1M H₃PO₄</th>
<th>*0.01M B(OH)₉</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>YSZ</td>
<td>NULTEQ</td>
</tr>
<tr>
<td>250</td>
<td>6.9</td>
<td>6.25</td>
</tr>
<tr>
<td>275</td>
<td>7.1</td>
<td>6.45</td>
</tr>
<tr>
<td>300</td>
<td>7.25</td>
<td>6.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T°C</th>
<th>0.01M B(OH)₉</th>
<th>0.01M KOH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>YSZ</td>
<td>NULTEQ</td>
</tr>
<tr>
<td>250</td>
<td>7.14</td>
<td>7.75</td>
</tr>
<tr>
<td>275</td>
<td>7.17</td>
<td>7.85</td>
</tr>
<tr>
<td>300</td>
<td>7.13</td>
<td>7.95</td>
</tr>
</tbody>
</table>
(b) YSZ 和 Pt 所測得之電位，經換算為 SHE 電位後比較，二者呈線性關係，如圖 5 所示，因

此 YSZ 電極適用於 Nernstian 關係，為一可逆式之高溫 pH 量測電極。

圖 4 測量值與理論 MULTeq 值誤差
Fig. 4 The Comparison Between Measured And Theoretical Values

圖 5 YSZ 與 Pt 量測電位比較
(c) 所使用之外臒式 Ag/AgCl 高溫參考電極，在使用前後有和 SCE 比較，發現偏移量在 4mV 以内，因此因高溫參考電極半電位偏移而造成之電位量測誤差可忽略。

五、結論

(1) 高溫 pH 電極可提供可靠之高溫水質 pH 境測。
(2) 在高溫環境下，如水質控制穩定，則高溫 pH 電極之半電位固定，此時 YSZ 電極可以當做高溫參考電極使用，以提供另一種測量高溫環境材質腐蝕電位之選擇。

參考資料

防蝕工程徵稿

為提升“防蝕工程”雜誌之水準及可讀性，內容分為論著、論述、防蝕新知三種，每篇文章不得超過約 7,500 字，每千字之稿酬分別為 800、800 和 400 元，論著之圖每幅 30 元，其餘為 10 元，表以字計酬；所有作品之參考資料或出處必須標明清楚。論著主要以中文撰寫，但題目、著者、單位、摘要和圖表均需要有中、英文；若以英文撰寫，題目、著者、單位和摘要需要有中、英文，並附全文之中文譯文或中文概述，撰寫規定詳見徵稿說明。論著和論述之作者可獲得 30 份免費單行本，另為提昇雜誌之品質，論著和論述將分別請兩位或一位專家審核，並且每篇稿會給作者校稿乙次，來稿盡量以稿紙書寫以利打字排版。此外，為強化雜誌封面效果，歡迎提供和腐蝕、防蝕相關圖片，並附說明，經採用，每張 1,000 元。雜誌內容與腐蝕或防蝕有關的題目皆受歡迎，如：(1) 腐蝕原理、機構，(2) 表面處理，(3) 防蝕技術，(4) 材料選用，(5) 損壞分析，(6) 技術發展等。歡迎各界學者專家人士踊躍投稿，來稿請寄“高雄市臨海工業區中國鋼鐵公司鋼鋁研究發展處魏豐義先生”。

附註：各種案例之介紹和解決方法，亦歡迎投稿刊登。另外，對於工業上實際經驗擬撰寫刊登有需協助者，可洽學會（TEL: 02-8364000）