外加電流式自動控制電位陰極防蝕法

葉心榮 蔡茂雄 邱明義 廖財昌
（電力研究所）

1. 前言

台灣屬於亞熱帶地區，全年氣候溫潤多溼，對材料的腐蝕作用強烈；本公司核能第三發電廠位於恆春的南隅，使用海水為冷卻水，海水的導電率為 20–25 μS/cm，雖無環境污染情形，電廠設備不論在陸上、地下、或海水中，均遭受到腐蝕問題。

緊急供水用海水打水桶機房，共裝有迴轉瀝清馬達四座，自民國 72 年起陸續裝設，迄今約已兩年。由於海水含氧的自然腐蝕，及構造材料的複雜，已造成鋼件支架的嚴重腐蝕，鋼材表面呈凹陷，銹蝕斑塊。尤其是凸出邊緣部份，多處腐蝕剝落，呈銳齒狀。

本防腐研究計劃係由核燃料電工程於 72 年提出，由電力研究所設計實施。

2. 腐蝕理論及防蝕對策

2-1 腐蝕的原因

腐蝕（corrosion）係指金屬受環境的影響，藉化學或電化學反應所造成的破壞性侵蝕。物理原因所造成的破壞，如侵蝕（erosion）、損傷（galling）、磨耗（wear）等一般不稱為腐蝕。在某些場合，物理破壞可能和化學侵蝕同時發生，例如腐蝕侵蝕（corrosionerosion）、腐蝕磨耗（corrosion wear）、磨損腐蝕（fretting corrosion）等。

在中性或接近中性的水中，正常溫度下，鐵的腐蝕必須有氧溶解在內才能發生。在飽和空氣的水中，最初腐蝕速率可能達到 100 mmd 左右。數天後當氧化鉻膜形成而造成氧氪離的障礙（barrier）後，腐蝕速率則逐漸減慢下來，穩定狀態的腐蝕速率一般為 10–25 mmd。自化學而言，任何金屬的表面為電極的組合，金屬鹽使電極短路（圖 1），周圍的水溶液作氧化還原反應之電子傳遞介質。此時電位較高的陰極（"-" 极）發生還原反應，電位較高的陰極（"+" 极）發生氧化反應，這就是一般所稱的局部作用電池（local-action cells）。例如，鐵在水溶液中的腐蝕反應為：

2Fe→2Fe^{2+} + 4e⁻

2H₂O + O₂ + 4e⁻ → 4OH⁻

2Fe + 2H₂O + O₂ → 2Fe(OH)₂

2H₂O + ½O₂ + 2e⁻ → 2OH⁻

由於鐵腐蝕氧化而使金屬轉換為腐蝕生成物。只要金屬表面保持乾燥，就不產生局部作用電池，腐蝕的現象就不會發生。

在室溫下鐵在飽和空氣的水中，氯化鋁濃度對腐蝕的影響情形如圖 2，初期腐蝕速率首先隨氯濃度增加而增加，達到 3%時開始減少，當達到飽和時（25% NaCl），其腐蝕速率較在蒸餾水中還小。其理由為氯的溶解擴散作用控制了整個氯化鋁濃度的腐蝕速率，因氯在水中的溶解度隨氯濃度的增加而減少，這足以解釋在較高的氯化鋁濃度下腐蝕速率降低，而最初上升的原因顯然與腐蝕鐵上形成鐵離子膜使電池防蝕性質的改變有關，形成高傳導性的水溶液。

--- 29 ---
迴轉機能機的結構支柱（Frames）使用材料為碳鋼，傳動機構為鋁青銅（Aluminium Bronze），過濾器為Monel，扣環螺絲為鎳基合金，些些金屬合金在海水中各具不同之腐蝕電位（如表1），以海水為介質，金屬導電為電子回路，形成一閉路電池，放電腐蝕。結構體的合金中，以碳鋼的電位為最低（active），形成同向腐蝕，放出的腐蝕物質，生成絮凝，如下列反應

Fe → Fe^{2+} + 2e

其他三種合金電位皆較碳鋼為高（noble），形成陰極，吸收碳鋼放出的電子而受到保護。在整個構成體中，碳鋼除了有腐蝕外，另有犧牲陽極的作用，故其腐蝕速率特別高。

表1 海水中金屬之自然電位
（取和甘汞基準電極）

<table>
<thead>
<tr>
<th>金屬</th>
<th>電位V</th>
<th>金屬</th>
<th>電位V</th>
</tr>
</thead>
<tbody>
<tr>
<td>鋼</td>
<td>+0.33</td>
<td>銅</td>
<td>+0.91</td>
</tr>
<tr>
<td>銅</td>
<td>+0.04</td>
<td>鍍鈦鋼（18Cr-9Ni）</td>
<td>+0.72</td>
</tr>
<tr>
<td>不銹鋼（18Cr-8Ni）</td>
<td>-0.06</td>
<td>鍍鎳銅（Cu-Ni-30）</td>
<td>+0.37</td>
</tr>
<tr>
<td>Monel（Ni-60Cu）</td>
<td>-0.16</td>
<td>寶鋼（Cu-Ni）</td>
<td>+0.56</td>
</tr>
<tr>
<td>Cu-Ni（30%Ni）</td>
<td>-0.15</td>
<td>鍍鋅鋼</td>
<td>-0.25</td>
</tr>
<tr>
<td>鋼</td>
<td>-0.50</td>
<td>鍍銅鋼</td>
<td>-0.28</td>
</tr>
<tr>
<td>鍍銅鋼</td>
<td>-0.60</td>
<td>鍍鋅鋼</td>
<td>-1.07</td>
</tr>
</tbody>
</table>

2-3 陰極防蝕法之原理

陰極防蝕法有兩種，即（1）犧牲陽極法及（2）外加電流法。前者係利用自然電位較低的金屬（如鎳、鋁、錳等）做為犧牲與被保護的金屬偶合（couple）在一起，使被保護體的自然電位下降，當電位降到防蝕電位時，被保護體就不再腐蝕。

外加電流法係使用——外加直流電源，其正極接到一輔助陽極（可用適當金屬或非金屬導電體組成），負極接到被保護體，經一電解質介電導電流來達成陰極防蝕的目的，如圖4所示。

觀察金屬體在水溶液中之表面現象（如圖1所示），顯示局部作用金屬之存在，如果陽極外加電流液陰極催化，則陰極之電位逐漸降低，當陰極催化電位低於腐蝕電位而到達陽極之閉路電位時，兩電極間則沒有電位差存在，即不發生腐蝕電流。如此，腐蝕作用及停止；此為金屬陰極防蝕之基本原理。

2-2 可行之防蝕對策

在海水中之鋼鐵結構物，由於海水的溶氧量及含鹽量加上海水流速（如圖3），造成鋼鐵結構物的快速腐蝕，要減少其腐蝕，一般可分為四個方法，即：

(1) 改用耐蝕性金屬或合金。
(2) 實施防蝕塗裝或表面鍍膜處理。
(3) 構適材料或除氧氣及電解質。
(4) 施行陰極防蝕。

![流速對腐蝕速度的影響](image1.png)

![以極化圖形說明陰極防蝕之原理](image2.png)

～30～
ϕ_a: 陽極之開路電位
ϕ_c: 陰極之開路電位
ϕ_{corr}: 腐蝕電位或稱自然電位
I_{corr}: 腐蝕電流
$I_{pretection}$: 外加電流或完全保護之電流

因此，只要持續通以直流電流，使金屬體的電位保持在其陽極的開路電位，金屬便不再發生腐蝕，採用防蝕理論形如圖 5 所示。

若金屬已於陽極為高於陽極電位 ϕ_a 則腐蝕速率仍然為零，所多加的電流並無益處，反而可能引起金屬的氫脆化 (Hydrogen Embrittlement) 不良現象。所以，在實用上外加電流值應保持接近理論上之最低值，也就是使防蝕電位保持在 ϕ_a。若有外加電流低於完全保護所需之電流，仍可獲得相當程度之保護。例如在圖 5 中，外加電流為 be，則腐蝕電位自 ϕ_{corr} 移到 a；腐蝕電流自 lcorr 移到 ab；當外加電流 be 增加時，電位 a 向 ϕ_a 移動，腐蝕電流 ab 也逐漸變小；當 a 與 ϕ_a 重合時，腐蝕電流 ab 變為零，也就是所加的直流電流達到理論防蝕電流值。

3. 現場調查

同類的結構體在不同的腐蝕環境下，所受的腐蝕情況相異，於設計防蝕系統之前，必需先進行現場實測調查。本研究現場調查數據，分述於後：

3-1 遞轉欄周欄的結構狀況

遜轉欄周欄的構成材料採有四種金屬體，其固定支架 (Frame Structure) 為碳鋼，騏輪 (Traveling Chain) 為鋁青铜 (Al Bronze)，過濾網 (Filter Net) 為蒙奈合金 (Monel Metal)，扣環鈽輪 (Sprocket pulley) 為織維合金。

3-2 海水水質

核三廠位於臺灣南部恆春海岸，取用之海水水質良好，未受工業污染。民國 73 年初取海水淡水其電阻率為 20 ～ 25 Ω·cm，硫化物含量甚微，均在 10 ppb 以下。
3-3 離散樣本機電金屬的自然電位

實測所得 離散樣本構造 金屬在海水中的混合自然電位為

\[-340 \text{ mV (vs SCE)}\]

相當於

\[-410 \text{ mV (vs Cu-CuSO}_4\text{)}\]

有關自然電位測試工作之考慮事項及實測數據，簡述於下：

本鋼箍離散樣本係多種材料構成之，因此，所測得的自然電位係各種金屬間之混合電位。自動控制電源系統之設計上，用以自動控制依據之一防蝕電位，必需於設計之先，以臨時參考電極，針對鋼箍樣本各點，作移動式之測量；然後由所測各點電位中，經分析取最典型值，供做控制之用。

3-4 雜訊干擾狀況

由於所採三全廠高壓電力設備之接地系統分佈面積廣，有時可能因離散電流（Stray Current）流經參考電極與被保護結構物間，導致形成雜訊信號。此種雜訊常於低頻者，而在具有高頻脈衝之地點，有時高頻訊號因於各電極之間，耦合至防蝕電位椬出回路中。此兩種信號皆有可能對電路構成影響。因此，不但需對結構物之自然電位予以測定，且需觀察有否雜訊信號存在其中。本鋼箍於測定自然電位時，以 TEKTRONICS 466 OSCILLOSCOPE 觀測雜訊信號之波形。其掃描時間為

\[2 \text{ ms} \sim 1 \text{ ms/div} \]

涵盖高頻至低頻，經測定觀察結果顯示並無任何可虞之雜訊干擾。實際觀測之防蝕電位雜訊干擾信號情況，如圖 8 所示。

4. 防蝕系統的設計

4-1 短路電極防蝕法

鋼箍離散樣本在海水中的面積約為 223 平方公尺，如果採用鋼箍電極（500×100×100 %）防蝕法，所需電極數量可依下列方式估計：

鋼箍的表面積：500×100×100 % = 0.2 \text{ m}^2

每支重 31 公斤，耐用年限 2 年。

假設鋼箍有效防蝕面積比為 1:40（鋼箍：鋼箍），由於海水流速為 7 ft/sec，腐蝕速率增加 3～4 倍（如圖 3），則估計所需鋼箍數量為

\[223 \text{ m}^2 \times 0.2 \text{ m}^2 / 40 = 28 \]

\[28 \times (2 \sim 4) = 110 \text{ 支} \]

因而在選擇採用 短路電極法 防蝝，則需增加重量 3,100 公斤，導致鋼箍離散樣本洗時需動電力之無謂消耗損失。

至於鋼箍的裝配使用方法，一般採用直接焊接於被保護表面上，鋼箍焊接完成後，結構體的腐蝕相當然緩慢，一般需 20 天才會完成，而達防蝕效果。然而，鋼箍離散樣本裝配後，若在空氣中的結構體轉入海水中，在海水的部份轉到空氣中，此時因環境的改變，防蝝電極沒有立即供應較大的電流電流，結構體無法受到完全保護，只能依短較小的電流緩慢進行極化防蝝。

再者，自蒸餾的立場評估而言，鋼箍每公斤以臺幣 120 元計算，則需 36 萬元（3,000 公斤, 120 元/公斤 = 360,000 元）。自動控制隔室外加電流法只需要 26 萬元（電流部分 14 萬元，鋼箍 12 萬元），其使用年限可達 10 年以上。

綜合上述各點而言，對鋼箍離散樣本使用短路電極法防蝝較為不理想。

4-2 自動控制式外加電流防蝝法的優點

鑑於離散樣本鋼箍的形狀為矩形方塊，保護電流分佈要均勻，因此需用電極小（20 % φ×300 mmL），電流重（424 克）的黃金合金鋼 9 支，平均分佈於被保護鋼的內外（如圖 7）供放出防蝝電流，使被保護鋼得到均勻的防蝝電流。

計算在海水中的固定結構體面積約為 97 平方公尺，鋼箍部分的表面積約為 200 平方公尺；海水在水中透態約 44 \text{ %} 70°。

防蝝面積合計為 223 平方公尺。

計算式：

\[97 \text{ m}^2 + 200 \text{ m}^2 \times 44 \text{ %} = 223 \text{ m}^2 \]

\[Y: 0.1 \text{ V/div} \]

\[X: 2 \text{ ms} \sim 1 \text{ ms/div} \]

圖 8. 以示意圖測防蝝電位雜訊干擾信號

～32～
以水流量速度 7 厘秒，部分碳鋼被覆絕緣，並且設定
防蝕電流密度為 0.2 A/m²(2)，則總防蝕電流為 44.6 A。
計算式:
$$223 \text{ m}^3 \times 0.2 \text{ A/m}^2 = 44.6 \text{ A}$$
電源裝置控制系統設計條件如下:
輸入：AC 110V
輸出：DC 12V 60A（可調）

應用自動控制式外加電流法防蝕，電源一開始就以較
高的電流密度供應，因電流被保護體及未保護化，電
控部份可依電阻（可以調控損電流輸出），供應防蝕
e流；當被保護體陰極化後，輸出的電流會慢慢下降，
僅保持足夠的電流來維持防蝕需求。從一開始到穩定下
來，只要 3 小時，然後，由陰極化生成物慢慢生成，所
需的防蝕電流也跟著慢慢減小。防蝕系統在正常使用期間
，電鍍電流會有一改變，如水溫、電壓、污染物或被保護體
的變化，防蝕電流則可依其變化要求而自動增減，保持理
想的防蝕效果。綜合其優點可簡述如下:
(1) 可調整陽極位置或主回路電阻，使被保護體得到
均衡的防蝕電位分佈。
(2) 可因工件快速修正所需的防蝕電流。
(3) 不受水溫，電流、電壓或被保護體的變化影響，
隨時可保持防蝕效果。
(4) 設計使用年限可達 10 年以上。
(5) 隨時供應防蝕資訊。

4-3 轟電金屬陽極特性及加工處理

陽極材料有多種，性能略如表 2 所示。由於保護體的
形狀狹長（1.7x3.3x19 M），周圍又被水關密封，只
留進出水口，陽極的放置點只限於結構體內，又需使用多
支陽極其電流分布才能均勻，使用年限高達 10 年以上,
故選用性能優越體積小的轟電金屬陽極，其規範說明於
圖 9 內，白金電極在海水中允許的輸出電壓為 0~12 V
DC，單位表面之放電流密度為 540~3200 A/m²(3)。

表 2 各種轟極之放電流密度及壽命(4)

<table>
<thead>
<tr>
<th>陽極材料</th>
<th>放電密度（Amp/m²）</th>
<th>對應電流（Amps）</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe-5%Ni-1%Ag</td>
<td>150 250</td>
<td>15~25</td>
</tr>
<tr>
<td>Fe-5%Ni-2%Ag</td>
<td>160 270</td>
<td>13~25</td>
</tr>
<tr>
<td>钢（含硫鉻）、碳結晶</td>
<td>540~3200</td>
<td>0.01</td>
</tr>
<tr>
<td>鋼</td>
<td>10~40</td>
<td>230~450</td>
</tr>
<tr>
<td>Fe-14.5%Si-4.5%Cr</td>
<td>10~40</td>
<td>230~450</td>
</tr>
<tr>
<td>硅酸氧化物,Fe30</td>
<td>10~40</td>
<td>20~150</td>
</tr>
</tbody>
</table>

4-4 轟電金屬陽極在正常使用狀況下，其壽命與電流密度
本身材質、使用環境……等諸因素有關。其中最值得重
視的兩項，係電極時電壓大小及其品質。所謂電壓之大小
，即指陰極放電端點與結構體間之閉路電壓，一般均以不
超過 12V 為原則，依條件製造方法而異。而所謂電壓之
品質，即指該電壓是否為純直流，亦即該直流電壓有否包
含交流成分（AC, Component）而言。而交流成分乃由波波
（Ripple）所形成，波波之大小與整流之方式
，負載之大小關係密切。電壓高極易使白金膜穿孔，而
Ripple 太大，則極易加速白金膜損耗，兩者均將造成電
極壽命之急劇縮短，故在設計上需特別注意。波 Ripple
在 100 Hz 以下時，無需使用 3 相或單相整流電路，並
不會顯著增加白金膜的消耗率(4)。

操作電壓之大小，由電源變壓器輸出電壓大小，電壓
調整，整流回路，及線路壓降計算上，全面合乎考慮
，才能設計出適當電壓。而 Ripple 大小之設計，則需
按所供防蝕電流，由電壓至整體電流之範圍，妥協於
設計。

一般防蝕電流控制式之方式有固定整流式，S C R 自動
控制式、高頻通斷自動控制式。而 Ripple 之消除方法亦
各有不同。兹以本研究所使用 S C R 控制式之整流電路
討論之。在本工程中，由於需適應防蝕電流在輕重變
急劇變化，故使用 LC 抗渣線圈（CHOKE Coil）整流電
路。
由 N.A.C.E 所發布之實驗報告顯示，通常若諧波之頻率愈高，則諧波之損耗愈快。故使用高頻諧波自動補償式，較 SCR 自動補償式，對諧波之損耗率高了將近一倍。

由於諧波電壓應小於何值，方不易對諧波構成損害，目前並無權威性之報告。故目前本公司接受諧波電壓降至最低範圍界定。在防止電流波動之情況下，其諧波最大值約 50 mV 左右，如圖 13 所示。

由圖 10、11 以 SCR 全波導通時（重載時）討論之，其相互關係如下:

\[V_{m} = V_{m} - I_{m} R_{i} \]

\[V_{m} = \frac{R_{L}}{R_{L} + R_{L}} \times V_{m} \]

此時 \(R_{i} \) 包含引接至開極之引線及開極同流引線之總電阻。

由圖 12 等效交流電路

\[X_{s} = V_{r} \frac{X_{s}}{X_{t} + X_{s}} \]

\[V_{r} = \frac{4V_{m}}{\pi} \times \frac{\cos 2\omega t}{(X_{s} - X_{s})} \]

可得 \(V_{r} = \frac{X_{s}}{X_{s}} \times V_{r} \times \cos \frac{\pi}{2\omega t} \)

\(0.707(0.424 V_{m}) \)

\[V_{r} \text{ (rms)} = \frac{530000}{L C} V_{m} \]
4-4. 參考電極

由於自動控制式外加電流陰極防鈍系統所用參考電極需永久性的浸在海水中，經使用後一般實驗室中所使用的標準半電極（如 SEC, Ag/AgCl 等）不適合採用。故各種基準半電極都含有特定化學藥品的內部溶液（Filling Solution），該溶液的濃度穩定，電極電位才能穩定。常採取海水中使用時，由於氯離子造成作用，內部溶液濃度將會改變，故電極電位亦會改變，而考慮使用。各種基準電極之電位如表 3 所示。

<table>
<thead>
<tr>
<th>電極之種類</th>
<th>電極之構成</th>
<th>E°25°C (V)</th>
<th>dE/dt (V)</th>
<th>飽和甘汞電極</th>
</tr>
</thead>
<tbody>
<tr>
<td>稀釣甘汞</td>
<td>Hg/Hg₂Cl₂, 稀釣 KCl</td>
<td>0.242</td>
<td>-0.76 × 10⁻⁸</td>
<td>0.039</td>
</tr>
<tr>
<td>稀釣甘汞</td>
<td>K₂/Hg₂Cl₂, IN KCl</td>
<td>0.280</td>
<td>-0.24 × 10⁻⁸</td>
<td>+0.039</td>
</tr>
<tr>
<td>海水甘汞</td>
<td>Hg/Hg₂Cl₂, 海水</td>
<td>0.296</td>
<td>-0.28 × 10⁻⁸</td>
<td>+0.054</td>
</tr>
<tr>
<td>飽和氯化鈉</td>
<td>Ag/AgCl, 飽和 KCl</td>
<td>0.196</td>
<td>-1.10 × 10⁻⁸</td>
<td>-0.046</td>
</tr>
<tr>
<td>海水氯化鈉</td>
<td>Ag/AgCl, 人工海水</td>
<td>0.250</td>
<td>-0.62 × 10⁻⁸</td>
<td>+0.009</td>
</tr>
<tr>
<td>飽和硫酸銅</td>
<td>Cu/CuSO₄, 飽和 CuSO₄</td>
<td>0.316</td>
<td>+0.90 × 10⁻⁸</td>
<td>+0.074</td>
</tr>
</tbody>
</table>

注：電極電位 E=E°25°C + (t-25) dE/dt t: 溫度 (°C)

本系統使用稀釣參考電極，以高純度鋁（99.99%以上）熔鍊成型大小形狀為 20 mm φ×100 mm L 的圓柱形，經與 3C-2V 同軸電纜相接，置於多孔的 PVC 套管內，底部以石膏固定，外部以 Epoxy 結緣樹脂液灌注密封，（如圖 15）使用壽命預測超 10 年以上。

純銅電極於清潔的海水中，具有穩定的自然腐蝕電位 -1025 ± 10mV（Vs. SCE），如圖 17 所示。因此電位保護金屬之自然電位，如海水不受碳化物污染，電位變化就不大，通常在 10 mV 以內。實際上它可與其他電極（如鋼、 APPRO）所使用，用於鋁電極保護系統中，所使用各種參考電極所佔比例情形。塗電電極的陰極保護系統所用的參考電極於塗電電極所用的情況接近。

![圖 15. 各種電極在無陰極保護系統的分配情形](image1)

![圖 16. 永久性鋁參比電極構造圖](image2)

![圖 17. 鋁電極在未污染海水中之自然電位](image3)
5. 自動控制電源裝置

自動控制電源裝置由主電路配電箱及控制電路配電箱組合而成，其整體均設有開關設備及監視用儀表，其外形及內部構造如圖 19、圖 20 所示。

5-1 主電路

主電路由電源電壓器、隔離器、削波電容、削波電容、分離器等所構成。交流電源經由電源電壓器、隔離器之整流後，整流後再由電容器及電容器之濾波作用而得直流之防蝕電流。為使整體迴轉幅頻之每個部份能夠均勻獲得防蝕電流，除充分考慮整體之數目及位置之外，電流之正極及負極亦配合整體之數量各分為三個級，即正極為 A1、A2、A3；負極則為 C1、C2、C3。主電路如圖 21 所示。

電源整流器為單相，二次側之電壓為 12V-0-12V，一次側則設有多組分相可視實際之需要，接在整體化的電源端子，二次側之額定電流則以結構物在機械失之所需之最大防蝕電流作爲設計之條件。

4-5 防蝕電位信號傳輸器

本圖所稱的防蝕電位信號傳輸器的偵測電極，欲取得其防蝕電位正確之時，必須在各一般防蝕工程，從構體表面引出，則所取得之電極勢勢必不準確，且不穩定一般引起測試電位不正確的主要原因是由於 I R電位差所引起的。當結構體的表面接受防蝕電流時，各部份的小電流脈衝勻於直流，從底部向上流動，而形成引起 IR電位差的 IR乃結構電的電阻，為消去 IR的干擾，特設計製造「電位信號傳輸器」（如圖 18 所示），裝置於參考電極旁邊，則所取得的被保護結構化電位即為正確值。此電位電流防蝕電位之間產生一電位差，根據此電位差值可瞭解結構體的真實防蝕狀況。

4-6 防蝕金屬保護的安裝

由於可利用的空間不大，又必須避開屏極與結構體縫隙及防止短路事故，設計套管使用之 PVC 套管，管壁鍍 1″的銅管，孔與孔之間隔為 2″，以供屏極所放電流流出。隔層頂端以 ABS 絕緣體封住，以防止白金電極腐蝕損壞而從 PVC 套管頂端放入隔極。每支 PVC 套管內安設 3 支隔極，底部的一支置於 EL 隔 27 呎，中間一支置於 EL 隔 21 呎，上方一支置於 EL 隔 5 呎。每支隔極分開與其導線導線放入，當拉出隔極時會至接盒（Pulling Box）時，須留 3 公尺的長度，以便日後調整隔極之位置。每支迴轉隔極共需 9 支隔極，分別於 3 支 PVC 套管內，如圖 7 所示。
額定一次電壓：75 V–110 V–150 V–180 V–220 V

額定二次電壓：12 V–0–12 V

額定二次電流：60 A

防續電流並非經常保持在一定值，必須根據結構物之變化程度及其周圍環境之變化而變化。開電流在電路上除具保護之功能外並可控制其閉電角度及調整防續電流之大小。

本系統採用中間抽頭之全波整流方式其輸出之直流電流平均值為半波時之 2 倍，設其值為 E_a 時

则 $E_a = 2 \times \frac{1}{2\pi} \int_0^\pi \sqrt{2} E \sin \theta d\theta$

其中

E：交流電壓之有效值

θ：相位角

又陽極與結構物間之電阻為 R 時，防續電流 I_a 則為

$$I_a = \frac{E_a}{R} = \frac{\sqrt{2} E}{\pi R} (1 + \cos \alpha)$$

濾波回路包括電容器組及電感器，電容器組由多個電解電容並联回而成，電感器則設置在電源開關的開箱內，其二端經由套管拉到箱面。圖 23 說明電源變壓器之端子符號及配置，其中 L_4、L_6 為濾波電容器之二端。

～37～
5-2. 控制電路

控制電路可將複雜的切換開關 (Change Over Switch) 來選擇「手動」或「自動」。當選擇「手動」時，控制電路的功能是可利用設置於盤面的電阻可變電阻 (Potential Meter) 來調整開關所觸發的電位差，藉以控制防歎電流之大小。若選擇「自動」時，則依根據結構物的電位及環境的條件，自動控制控制防歎電流之大小，使其結構物之防歎電位變動在所希望的設定值。

本控制電路是稱為控制系統 (Closed-loop Control System)，亦稱為負軌控制系統 (feed-back control system)，基本構成如圖 24 所示，其中控制量 (controlled variable)、操作量 (manipulated variable) 分別指防歎電位及防歎電流，而影響在開關的設定值，設定值越大，防歎電流越小。換言之，二者之間有著偏差，防歎電流就趨於偏差角度之變化而持續地被修正，直到二者一致為止。

![控制電路](image)

圖 25 爲整個控制電路方塊圖。為力求控制電路的精確及可靠，從信號傳感器來的信號，除用電動電機外，還接有 DC/DC 轉換器 (Transducer) 以達到阻隔訊號，緩衝電流、訊號消波的目的。用電動電機最大之功能雖然是消除訊號，但亦可避免長久便於海水之中，水份滲透到內部線路部分而造成信號之失調。

除了監視電壓、電流用的數位式電表之外，還設有一臺可設定電表 (Setting meter)，在此電表之中心處設有一個三點式之切換開關，左右二側各有一個可調調電阻。將切換開關切換到左或右之位置時，可利用側邊之微調電阻設定所要的阻值，其操作方法是一邊順轉、調調電阻，一邊目視顯示器 (Display) 之顯示值直接顯示值為我們所要之電壓值(數值)

5-3. 配管與配線

核能電廠內的一切設備均須充分考慮到安全問題之故。本系統所用之配線均埋設於金屬管內。電纜電箱均接於 4 寸（1 寸=2.54 cm）之溝槽管，接頭之後而埋於海水之中，在溝槽管上於適當間隔處以 1 寸之溝槽以便於通訊電纜。溝槽管亦有二道，每支均安裝有三支溝槽。同時溝槽管之端頭固定一個拉管盒 (Pulling Case) 用以接續引線到溝槽之導線，各拉管盒再分別配金屬管到拉管箱 (Pulling Box)。

![控制電路方塊圖](image)

![引線盒](image)

~ 38 ~
優點是電阻溫度係數非常小，約為 $(3\sim10)\times10^{-4}$ 左右，可以說它的電阻值幾乎不受溫度之影響。電阻係數值則在 $40\sim50\ \mu \Omega \cdot cm$ 左右，圖 29 爲銅線間分流器之外形，是屬於一種四端子型的低電阻。
整個配線與配管系統如圖 30 所示。

5-4 本電路系統設計功能之特徵

(1) 動態控制，延時較短，可隨時控制防蝕電位於±0.5%範圍內。

(2) 因動態波長迅速，適用於防蝕電流密度瞬變之場合。

(3) 具有軟件方式強制極化之功能，可減少設計容量。

(4) 防蝝電位可依不同極度的需要，作適當之調整。

(5) 被保護物之電位與參考電極間之電位差，其輸入部分經高阻抗隔離，防止雜訊干擾及突波侵襲，完全不影響參考電極測值。

(6) 開流體控制，避免過保護或保護不足，並節省電力。

(7) 本 IC 电路不易損壞，穩定性高。

6. 防蝝系統裝工後之試運轉情形

本防蝝系統經由試運轉後，完成設計、提出設計書，由電力研究所提供詳細資料，核發製造圖，核三施工處施工。電源控制迴路部分則由電力研究所製作供應，按裝之後實施通電極化試運轉。

當啓用電源通電後，仰賴指示器傳來結構體與參考電極之電位差，此電位差與防蝝電位設定值比較，而輸出所必需的電流值；此時由於結構體尚未受保護，所需的防蝝電流值較大，全部輸出 $48A$，持續此電流約 2 小時，極化電位緩慢下降，接近預先設定值，同時輸出電流也逐漸減小。約 3 小時後，極化電位已降至設定值，防蝝電流保持在 20A 左右。自此以後，極化電位保持不變，而防蝝電流依然緩慢減小，此時結構體表面逐漸生成氧化產物。試運轉極化狀況，如圖 31 所示。
7. 陰極防腐系統運轉效果之檢討

7-1. 防腐效果測試結果

以銅-硫酸銅參考電極從結構體的頂端放入結構體的四周及下側，外接高阻抗（10^4 蓄姆以上）電錶，測量結構體不同深度及四周角度的防腐電位，發現水面下方5公尺的範圍，防腐電位都合乎設定值的要求。底部結構體有保護不足的現象。調整陽極位置後，約經半個月，再
度調查各點的防蝕電位，分布範圍在

\[-850 \sim -900 \text{ mV} (\text{Vs. Cu/CuSO}_4)\]

之間，可見已達到完全防蝕效果(4)。

7-2 防蝕效果的評估簡要

一般防蝕效果評估，可採由所測得的防蝕電位值

以判斷(5)(6)。在中性的環境中，鋼纖的防蝕電位約在

\[-850 \text{ mV} (\text{Vs. Cu/CuSO}_4)\]，銅及銅合金則為

\[-430 \text{ mV}\]，不銹鋼與鉻合金與鋼纖相同。在有硫酸鹽還原細菌繁殖

的場所，鋼纖的防蝕電位在

\[-950 \text{ mV}\]，即可達成防蝕目標。

8. 結 論

爲防止核三廠緊急供水系統迴轉欄門構之腐蝕，經電

力研究所與輻能技術處及核三施工處通力合作，設計自動

控制式外加電流陰極防腐系統，每機組裝設九支陰極白金村

電極，進行防蝕工作，經半年試運轉的結果，證實達到預

期之防之蝕效果，總結如下：

(1) 核三廠冷卻海水雖未受工業污染，然迴轉欄門構

由四種不同金屬材料所構成，形成海電腐蝕效應(GALVA-

NIE CORROSION EFFECT)，使電位最低之鋼纖結構材料，

發生腐蝕凹陷剝落現象。

(2) 警方分析比較使用犧牲陽極法與外加電流法的優劣

結果，證實使用外加電流法較經濟有效，且使用年限高達

五倍以上。

(3) 本研究採用自動控制式外加電流防蝕系統，使用

動態式 S C R 自動控制電路，使受保護的防蝕電位可隨

時較實際需要而設定，不受腐蝕環境的變化或欄門構是否

迴轉，而有所改變，不僅可防止腐蝕不良現象，同時可

以避免電流的浪費，而節省能源。

(4) 裝置信號傳感器，使參考電極與被保護構之間

的電位差，能準確的測出，避免 I R電位降的干擾。

(5) 每機組使用 鋅白金村陽極九支，均勻分布於結構

件的內外，進行放電流給結構件，達到全面防蝕的目

標。

9. 致 謝

本研究承蒙核能技術處機構的支援，並感謝核三施工

處電務課的通力合作，得以順利完成，謹此致謝。

參考資料

3. 楊江榮等「深海電廠冷卻海水浸入鋼板槽陰極防腐蝕之

研究」，臺灣電力公司電力研究所編號 8303(1983)

6. 本篇轉載於台電工程月刊第 44期 74-7。

～ 41～